11.計(jì)算:${16^{\frac{1}{2}}}+{(\frac{1}{81})^{-0.25}}-{(-\frac{1}{2})^0}$
化簡(jiǎn):$(2{a^{\frac{1}{4}}}{b^{-\frac{1}{3}}})(-3{a^{-\frac{1}{2}}}{b^{\frac{2}{3}}})÷(-\frac{1}{4}{a^{-\frac{1}{4}}}{b^{-\frac{2}{3}}})$.

分析 利用指數(shù)性質(zhì)、運(yùn)算法則直接求解.

解答 解:${16^{\frac{1}{2}}}+{(\frac{1}{81})^{-0.25}}-{(-\frac{1}{2})^0}$
=4+3-1
=6.
$(2{a^{\frac{1}{4}}}{b^{-\frac{1}{3}}})(-3{a^{-\frac{1}{2}}}{b^{\frac{2}{3}}})÷(-\frac{1}{4}{a^{-\frac{1}{4}}}{b^{-\frac{2}{3}}})$
=$\frac{3}{2}$${a}^{\frac{1}{4}-\frac{1}{2}+\frac{1}{4}}$$^{-\frac{1}{3}+\frac{2}{3}+\frac{2}{3}}$
=$\frac{3}{2}b$.

點(diǎn)評(píng) 本題考查指數(shù)性質(zhì)、運(yùn)算法則的應(yīng)用,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意指數(shù)性質(zhì)、運(yùn)算法則的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.四棱柱 ABCD-A1B1C1D1中,底面為平行四邊形,以頂點(diǎn) A 為端點(diǎn)的三條棱長(zhǎng)都相等,且兩兩夾角為 60°.則線段 AC1與平面ABC所成角的正弦值為$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.若直線ax-by+2=0 (a>0,b>0)被圓x2+y2+2x-4y+1=0截得的弦長(zhǎng)為4,則$\frac{1}{a}$+$\frac{1}$的最小值為(  )
A.$\frac{3}{2}$+$\sqrt{2}$B.$\sqrt{2}$C.$\frac{1}{4}$D.$\frac{3}{2}$+2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)與y軸交于B1,B2兩點(diǎn),F(xiàn)1為橢圓C的左焦點(diǎn),且△F1B1B2是邊長(zhǎng)為2的等邊三角形.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)直線x=my+1與橢圓C交于P,Q兩點(diǎn),點(diǎn)P關(guān)于x軸的對(duì)稱(chēng)點(diǎn)為P1(P1與Q不重合),則直線P1Q與x軸交于點(diǎn)H,求△PQH面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知$a=\frac{1}{2}$,$b={3^{\frac{1}{2}}}$,c=log32,則( 。
A.b>a>cB.c>b>aC.b>c>aD.a>b>c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知f(x)=(n2-3n+3)xn+1 為冪函數(shù),且f(x) 為奇函數(shù).(1)求函數(shù)f(x) 的解析式;(2)解不等式f(x+1)+f(3-2x)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.?dāng)?shù)列{an}滿足an+1=$\left\{\begin{array}{l}2{a_n},0≤{a_n}≤\frac{1}{2}\\ 2{a_n}-1,\frac{1}{2}<{a_n}<1\end{array}$,a1=$\frac{3}{5}$,Sn為{an}的前n項(xiàng)和,則S2016=1008.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.設(shè)tanα,tanβ是方程x2+3x-2=0的兩個(gè)根,則tan(α+β)的值為( 。
A.-3B.-1C.1D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知集合A={x|0<x<2},B={x|1-x2>0},則A∩(∁RB)=( 。
A.{x|0≤x≤1}B.{x|1≤x<2}C.{x|-1<x≤0}D.{x|0≤x<1}

查看答案和解析>>

同步練習(xí)冊(cè)答案