求兩條漸近線為x±2y=0且截直線xy3=0所得弦長為的雙曲線方程.

答案:略
解析:

設(shè)雙曲線方程為

聯(lián)立方程組得:消去y,得

設(shè)直線被雙曲線截得的弦為AB,且,,那么

那么

    

    

解得λ=4,所以,所求雙曲線方程是


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線C的兩條漸近線都過原點(diǎn),且都以點(diǎn)A(
2
,0)為圓心,1為半徑的圓相切,雙曲線的一個(gè)頂點(diǎn)A′與A點(diǎn)關(guān)于直線y=x對稱.
(1)求雙曲線C的方程;
(2)設(shè)直線l過點(diǎn)A,斜率為k,當(dāng)0<k<1時(shí),雙曲線C的上支上有且僅有一點(diǎn)B到直線l的距離為
2
,試求k的值及此時(shí)B點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知中心在原點(diǎn),焦點(diǎn)在x軸上的雙曲線的離心率為
5

(1)求其漸近線方程;
(2)過雙曲線上點(diǎn)P的直線分別交兩條漸近線于P1、P2兩點(diǎn),且
P1P
=2
PP2
,S△OP1P2=9,求雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知焦點(diǎn)在x軸上的雙曲線C的兩條漸近線過坐標(biāo)原點(diǎn),且兩條漸近線與以點(diǎn)A(0,
2
)為圓心、1為半徑的圓相切,又知雙曲線C的一個(gè)焦點(diǎn)與點(diǎn)A關(guān)于直線y=x對稱.
(1)求雙曲線C的方程;
(2)求與雙曲線C共漸近線,且過點(diǎn)(1,
2
)的雙曲線方程,并求出此雙曲線方程的焦點(diǎn)坐標(biāo),長軸長和虛軸長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
2
-y2=1
與射線y=
1
2
x
(x≥0)公共點(diǎn)為P,過P作兩條傾斜角互補(bǔ)且不重合的直線,它們與雙曲線都相交且另一個(gè)交點(diǎn)分別為A,B(不同于P).
(1)求點(diǎn)P到雙曲線兩條漸近線的距離之積;
(2)設(shè)直線PA斜率為k,求k的取值范圍;
(3)求證直線AB的斜率為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知焦點(diǎn)在x軸上的雙曲線C的兩條漸近線過坐標(biāo)原點(diǎn),且兩條漸近線與以點(diǎn)A(0,
2
)
為圓心,1為半徑為圓相切,又知C的一個(gè)焦點(diǎn)與A關(guān)于直線y=x對稱.
(1)求雙曲線C的方程;
(2)若Q是雙曲線C上的任一點(diǎn),F(xiàn)1、F2為雙曲線C的左、右兩個(gè)焦點(diǎn),從F1引∠F1QF2的平分線的垂線,垂足為N,試求點(diǎn)N的軌跡方程.

查看答案和解析>>

同步練習(xí)冊答案