如圖,正三棱柱.
(1)求證:平面;
(2)求證:;
(3)若.
(1)證明見解析(2)證明見解析(3)
(1)證明:.
.
.
(2)證明:連結(jié).
.
又因為E是AC的中點,.
.
(3)作.
.

..
. .
.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,某建筑物的基本單元可近似地按以下方法構(gòu)作:先在地平面內(nèi)作菱形ABCD,邊長為1,∠BAD=60°,再在的上方,分別以△與△為底面安裝上相同的正棱錐P-ABD與Q-CBD,∠APB=90°.
(Ⅰ)求證:PQ⊥BD;
(Ⅱ)求二面角P-BD-Q的余弦值;
(Ⅲ)求點P到平面QBD的距離.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知:四棱錐P-ABCD,,底面ABCD是直角梯形,,且AB∥CD,, 點F為線段PC的中點,
(1)求證: BF∥平面PAD;
(2) 求證:。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,ABCD是正方形,O是正方形的中心,PO底面ABCD,E是PC的中點。
求證:(1)PA∥平面BDE
(2)平面PAC平面BDE
(3)求二面角E-BD-A的大小。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在四棱錐中,,,底面, ,直線與底面角,點分別是的中點.
(1)求二面角的大;
(2)當的值為多少時,為直角三角形.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

等邊ABC的A∈平面α,B、C到面α的距離分別為2a、a,且AB=BC=AC=b.
(1)求面ABC與α所成二面角的大;
(2)若B、C到α的距離分別為3a、a呢?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,平面VAD⊥平面ABCD,△VAD是等邊三角形,ABCD是矩形,AB∶AD=∶1,F(xiàn)是AB的中點.
 。1)求VC與平面ABCD所成的角;
 。2)求二面角V-FC-B的度數(shù);
 。3)當V到平面ABCD的距離是3時,求B到平面VFC的距離.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,底面是正方形的四棱錐,平面⊥平面===2.
(I)求證:;
(II)求直線與平面所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知向量、滿足,則的夾角為(   )
A.B.C.D.

查看答案和解析>>

同步練習冊答案