(2013•湖南模擬)設(shè)極點(diǎn)與坐標(biāo)原點(diǎn)重合,極軸與x軸正半軸重合,已知直線l的極坐標(biāo)方程是:ρsin(θ-
π
3
)
=a,a∈R圓,C的參數(shù)方程是
x=2
3
+2cosθ
y=2+2sinθ
為參數(shù)),若圓C關(guān)于直線l對稱,則a=
-2
-2
分析:將兩曲線方程化為直角坐標(biāo)方程,根據(jù)題意可得圓心在直線上,圓心的坐標(biāo)適合直線的方程,由此求得實(shí)數(shù)a的取值.
解答:解:將兩曲線方程化為直角坐標(biāo)坐標(biāo)方程,得直線l直角坐標(biāo)方程為:
3
x-y+2a=0,
C:(x-2
3
2+(y-2)2=4.
因?yàn)閳AC關(guān)于直線l對稱,所以,圓心在直線上,圓心的坐標(biāo)適合直線的方程,
3
×2
3
-2+2a=0,
解得a=-2.
故答案為:-2.
點(diǎn)評:本題考查把極坐標(biāo)方程化為直角坐標(biāo)方程的方法,直線與圓的位置關(guān)系,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•湖南模擬)設(shè)橢圓C:
x2
a2
+
y2
b2
=1  (a>b>0)
的左、右焦點(diǎn)分別為F1、F2,上頂點(diǎn)為A,離心率為
1
2
,在x軸負(fù)半軸上有一點(diǎn)B,且
BF2
=2
BF1

(1)若過A、B、F2三點(diǎn)的圓恰好與直線x-
3
y-3=0
相切,求橢圓C的方程;
(2)在(1)的條件下,過右焦點(diǎn)F2作斜率為k的直線l與橢圓C交于M、N兩點(diǎn),在x軸上是否存在點(diǎn)P(m,0),使得以PM,PN為鄰邊的平行四邊形是菱形,如果存在,求出m的取值范圍;如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•湖南模擬)大學(xué)生自主創(chuàng)業(yè)已成為當(dāng)代潮流.長江學(xué)院大三學(xué)生夏某今年一月初向銀行貸款兩萬元作開店資金,全部用作批發(fā)某種商品,銀行貸款的年利率為6%,約定一年    后一次還清貸款,已知夏某每月月底獲得的利潤是該月月初投人資金的15%,每月月底需要    交納個(gè)人所得稅為該月所獲利潤的20%,當(dāng)月房租等其他開支1500元,余款作為資金全    部投入批發(fā)該商品再經(jīng)營,如此繼續(xù),假定每月月底該商品能全部賣出.
(1)設(shè)夏某第n個(gè)月月底余an元,第n+l個(gè)月月底余an+1元,寫出a1的值并建立an+1與an的遞推關(guān)系;
(2)預(yù)計(jì)年底夏某還清銀行貸款后的純收入.
(參考數(shù)據(jù):1.1211≈3.48,1.1212≈3.90,0.1211≈7.43×10-11,0.1212≈8.92×10-12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•湖南模擬)如圖所示,已知△ABC內(nèi)接于圓O,AB是圓O的直徑,四邊形DCBE為平行四邊形,DC⊥平面ABC,AB=2,tan∠EAB=
3
2

(1)證明:平面ACD⊥平面ADE,
(2)令A(yù)C=x,V(x) 表示三棱錐A-CBE的體積,當(dāng)V(x) 取得最大值時(shí),求直線AD與平面ACE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•湖南模擬)已知三棱錐的底面是邊長為1的正三角形,其正視圖與俯視圖如圖所示,則其側(cè)視圖的面積為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•湖南模擬)已知集合M={x∈Z|-1≤x≤1},N={x∈Z|x(x-2)≤0},則如圖所示韋恩圖中的陰影部分所表示的集合為( 。

查看答案和解析>>

同步練習(xí)冊答案