【題目】為了解人們對(duì)延遲退休年齡政策的態(tài)度,某部門從年齡在15歲到65歲的人群中隨機(jī)調(diào)查了100人,將這100人的年齡數(shù)據(jù)分成5組:,整理得到如圖所示的頻率分布直方圖.

1)由頻率分布直方圖,計(jì)算出各年齡段的人數(shù),并估計(jì)這100人年齡的眾數(shù)、中位數(shù)和平均數(shù);(該小題不用寫解題過程,請(qǐng)?jiān)诖痤}卷上直接寫出答案

2)支持延遲退休的人數(shù)如下表所示,根據(jù)以上統(tǒng)計(jì)數(shù)據(jù)填寫下面的2×2列聯(lián)表,據(jù)此表,能否有95%的把握認(rèn)為以45歲為分界點(diǎn)的不同人群對(duì)延遲退休年齡政的不支持態(tài)度存在差異?

附:,其中

年齡

支持延遲退休的人數(shù)

15

5

15

28

17

參考數(shù)據(jù):

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

【答案】1)眾數(shù):50,中位數(shù):45,平均數(shù):42;(2)有95%的把握認(rèn)為以45歲為分界點(diǎn)的不同人群對(duì)延遲退休年齡政策的不支持態(tài)度存在差異.

【解析】

1)根據(jù)頻率分布直方圖,可求得各組的人數(shù).由眾數(shù)、中位數(shù)和平均數(shù)的求法可得解.

2)由所給支持延遲退休的人數(shù)表格,填寫列聯(lián)表.由的計(jì)算公式代入求值,即可與臨界值比較做出判斷.

1

年齡

人數(shù)

20

10

20

30

20

眾數(shù):50,中位數(shù):45,平均數(shù):42,

2)由題意填寫列聯(lián)表如下,

45歲以下

45歲以上

總計(jì)

支持

35

45

80

不支持

15

5

20

總計(jì)

50

50

100

計(jì)算觀測值盡,

所以有95%的把握認(rèn)為以45歲為分界點(diǎn)的不同人群對(duì)延遲退休年齡政策的不支持態(tài)度存在差異.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)x>2),若恒成立,則整數(shù)k的最大值為(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《山東省高考改革試點(diǎn)方案》規(guī)定:從2017年秋季高中入學(xué)的新生開始,不分文理科;2020年開始,高考總成績由語數(shù)外3門統(tǒng)考科目和物理、化學(xué)等六門選考科目構(gòu)成.將每門選考科目的考生原始成績從高到低劃分為A、B+、B、C+、C、D+、D、E共8個(gè)等級(jí).參照正態(tài)分布原則,確定各等級(jí)人數(shù)所占比例分別為3%、7%、16%、24%、24%、16%、7%、3%.選考科目成績計(jì)入考生總成績時(shí),將A至E等級(jí)內(nèi)的考生原始成績,依照等比例轉(zhuǎn)換法則,分別轉(zhuǎn)換到[91,100]、[81,90]、[71,80]、[61,70]、[51,60]、[41,50]、[31,40]、[21,30]八個(gè)分?jǐn)?shù)區(qū)間,得到考生的等級(jí)成績.

某校高一年級(jí)共2000人,為給高一學(xué)生合理選科提供依據(jù),對(duì)六個(gè)選考科目進(jìn)行測試,其中物理考試原始成績基本服從正態(tài)分布N(60,169).

(Ⅰ)求物理原始成績?cè)趨^(qū)間(47,86)的人數(shù);

(Ⅱ)按高考改革方案,若從全省考生中隨機(jī)抽取3人,記X表示這3人中等級(jí)成績?cè)趨^(qū)間[61,80]的人數(shù),求X的分布列和數(shù)學(xué)期望.

(附:若隨機(jī)變量,則,,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,過點(diǎn)P(0,1)且互相垂直的兩條直線分別與圓O:交于點(diǎn)A,B,與圓M:(x﹣2)2+(y﹣1)2=1交于點(diǎn)C,D.

(1)若AB=,求CD的長;

(2)若CD中點(diǎn)為E,求△ABE面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線的兩焦點(diǎn)為,為動(dòng)點(diǎn),若.

1)求動(dòng)點(diǎn)的軌跡方程;

2)若,設(shè)直線過點(diǎn),且與軌跡交于兩點(diǎn),直線交于點(diǎn).試問:當(dāng)直線在變化時(shí),點(diǎn)是否恒在一條定直線上?若是,請(qǐng)寫出這條定直線方程,并證明你的結(jié)論;若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前n項(xiàng)和, 是等差數(shù)列,且.

)求數(shù)列的通項(xiàng)公式;

)令.求數(shù)列的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列四個(gè)命題:

①殘差平方和越小的模型,擬合的效果越好;

②用相關(guān)指數(shù)來刻畫回歸效果,越小,說明模型擬合的效果越好;

③散點(diǎn)圖中所有點(diǎn)都在回歸直線附近;

④隨機(jī)誤差滿足,其方差的大小可用來衡量預(yù)報(bào)精確度.

其中正確命題的個(gè)數(shù)是(  )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,經(jīng)過點(diǎn)B(0,1).設(shè)橢圓G的右頂點(diǎn)為A,過原點(diǎn)O的直線l與橢圓G交于P,Q兩點(diǎn)(點(diǎn)Q在第一象限),且與線段AB交于點(diǎn)M.

(Ⅰ)求橢圓G的標(biāo)準(zhǔn)方程;

(Ⅱ)是否存在直線l,使得△BOP的面積是△BMQ的面積的3倍?若存在,求直線l的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了響應(yīng)國家號(hào)召,某校組織部分學(xué)生參與了垃圾分類,從我做起的知識(shí)問卷作答,并將學(xué)生的作答結(jié)果分為合格不合格兩類與問卷的結(jié)果有關(guān)?

不合格

合格

男生

14

16

女生

10

20

1)是否有90%以上的把握認(rèn)為性別問卷的結(jié)果有關(guān)?

2)在成績合格的學(xué)生中,利用性別進(jìn)行分層抽樣,共選取9人進(jìn)行座談,再從這9人中隨機(jī)抽取5人發(fā)送獎(jiǎng)品,記拿到獎(jiǎng)品的男生人數(shù)為X,求X的分布列及數(shù)學(xué)期望

附:

0100

0050

0010

0001

2703

3841

6635

10828

查看答案和解析>>

同步練習(xí)冊(cè)答案