命題p:?x∈(0,
π
2
),3sinx-πx<0,則?p( 。
A、?x∈(0,
π
2
),3sinx-πx>0
B、?x0∈(0,
π
2
),3sinx0-πx0>0
C、?x∈(0,
π
2
),3sinx-πx≥0
D、?x0∈(0,
π
2
),3sinx0-πx0≥0
考點(diǎn):命題的否定
專題:簡易邏輯
分析:直接利用全稱命題的否定是特稱命題寫出結(jié)果即可.
解答: 解:因?yàn)槿Q命題的否定是特稱命題,所以命題p:?x∈(0,
π
2
),3sinx-πx<0,
則?p:?x0∈(0,
π
2
),3sinx0-πx0≥0.
故選:D.
點(diǎn)評:本題考查命題的否定,全稱命題與特稱命題的否定關(guān)系,基本知識的考查.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知sinα=
4
5
,
π
2
<α<π,求
(1)tanα的值;    
(2)cos2α+sin(α+
π
2
)
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a,b,c分別是角A,B,C的對邊,若a2=b2+bc+c2,則A=( 。
A、30°B、60°
C、120°D、150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列各組中的兩個函 數(shù)是同一函數(shù)的是( 。
(1)y1=
(x-3)(x+5)
x+3
;y2=x-5;
(2)y1=
x+1
x-1
,y2=
(x+1)(x-1)
;
(3)f (x)=x,g(x)=
x2
;
(4)f(x)=
3x4-x3
,F(xiàn)(x)=x3
x-1
;
(5)f1(x)=(
2x-5
2,f2(x)=2x-5.
A、(1)(2)
B、(2)(3)
C、(4)
D、(3)(5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
1+x
2x-1
的定義域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={(x,y)|x+y=2},B={(x,y)x-y=4}那么集合A∩B為(  )
A、{(-1,3)}
B、(3,-1)
C、{3,-1}
D、{(3,-1)}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在一個特定時段內(nèi),以點(diǎn)E為中心的7海里以內(nèi)海域被設(shè)為警戒水域.點(diǎn)E正北55海里處有一個雷達(dá)觀測站A.某時刻測得一艘勻速直線行駛的船只位于點(diǎn)A北偏東45°且與點(diǎn)A相距40
2
海里的位置B,經(jīng)過40分鐘又測得該船已行駛到點(diǎn)A北偏東45°+θ(其中cosθ=
5
26
26
,0°<θ<90°)且與點(diǎn)A相距10
13
海里的位置C.
(1)求該船的行駛速度(單位:海里/小時);
(2)若該船不改變航行方向繼續(xù)行駛,判斷它是否會進(jìn)入危險水域,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若直線3x-y+b=0與橢圓
x2
16
+
y2
4
=1相交所得的弦長為
8
10
37
,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的焦點(diǎn)在x軸上,離心率為
2
3
,且過點(diǎn)P(1,
2
3
),求該橢圓的方程.

查看答案和解析>>

同步練習(xí)冊答案