分析 (1)利用同角三角函數(shù)關(guān)系和已知條件f(α)=-$\frac{3}{26}$求得$\frac{{4\sqrt{3}m}}{13}-\frac{-11}{26}-1=-\frac{3}{26}$,由此得到m的值;則易得函數(shù)f(x)=sin(2x-$\frac{π}{6}$)-1,根據(jù)正弦函數(shù)的性質(zhì)來(lái)求最小正周期;
(2)利用(1)中得到的函數(shù)解析式和正弦函數(shù)的單調(diào)增區(qū)間解答.
解答 解:(1)$f(α)=msin2α-\frac{1}{2}cos2α-1=m•\frac{2tanα}{{1+{{tan}^2}α}}-\frac{1}{2}•\frac{{1-{{tan}^2}α}}{{1+{{tan}^2}α}}-1=\frac{{4\sqrt{3}m}}{13}-\frac{-11}{26}-1$,
又∵$f(α)=-\frac{3}{26}$,
∴$\frac{{4\sqrt{3}m}}{13}-\frac{-11}{26}-1=-\frac{3}{26}$,即$m=\frac{{\sqrt{3}}}{2}$;
故$f(x)=\frac{{\sqrt{3}}}{2}sin2x-\frac{1}{2}cos2x-1=sin({2x-\frac{π}{6}})-1$,
∴函數(shù)f(x)的最小正周期$T=\frac{2π}{2}=π$;
(2)f(x)的遞增區(qū)間是$2kπ-\frac{π}{2}≤2x-\frac{π}{6}≤2kπ+\frac{π}{2}$,
∴$kπ-\frac{π}{6}≤x≤kπ+\frac{π}{3},k∈Z$,所以在[0,π]上的遞增區(qū)間是[0,$\frac{π}{3}$]∪[$\frac{5π}{6}$,π].
點(diǎn)評(píng) 本題主要考查了三角函數(shù)中的恒等變換應(yīng)用,正弦函數(shù)的單調(diào)性.考查了學(xué)生基礎(chǔ)知識(shí)的綜合運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ∅ | B. | {0} | C. | {0,1} | D. | [0,1] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2017屆山東臨沭一中高三上學(xué)期10月月考數(shù)學(xué)(文)試卷(解析版) 題型:解答題
已知數(shù)列是等差數(shù)列,是等比數(shù)列,且,,.
(1)求數(shù)列和的通項(xiàng)公式;
(2)數(shù)列滿(mǎn)足,求數(shù)列的前項(xiàng)和
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com