已知點P是直線3x+4y+5=0上的動點,點Q為圓(x-2)2+(y-2)2=4上的動點,則|PQ|的最小值為( 。
A、
9
5
B、2
C、
4
5
D、
13
5
考點:直線與圓的位置關(guān)系
專題:直線與圓
分析:根據(jù)直線和圓的位置關(guān)系,求出圓心到直線的距離,即可得到結(jié)論.
解答: 解:由圓的標(biāo)準(zhǔn)方程(x-2)2+(y-2)2=4得圓心坐標(biāo)為C(2,2),半徑R=2,
圓心到直線的距離d=
|2×3+4×2+5|
32+42
=
19
5
,
在|PQ|的最小值為d-R=
19
5
-2
=
9
5
,
故選:A.
點評:本題主要考查直線和圓的位置關(guān)系的應(yīng)用,求出圓心到直線的距離是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
,
b
不共線,且|2
a
+
b
|=|
a
+2
b
|,求證:(
a
+
b
)⊥(
a
-
b
).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩圓C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直線l:x+2y=0,
(1)求經(jīng)過圓C1、C2的交點且和直線l相切的圓的方程;
(2)若實數(shù)x,y滿足(1)中所求圓的方程,求
y
x
的最大值,2y-x的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|x2-5x+4|,且方程f(x)=mx有三個不相等的實數(shù)根,則m=
 
  且三個實根的和是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ)(其中A>0,ω>0,|φ|<
π
2
)的圖象如圖所示.
(1)求A、ω及φ的值;
(2)若α∈(-
π
2
,0),且f(
α
2
+
π
12
)=
5
13
,求tanα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)變量x、y滿足
x+y≥3
x-y≥-1
2x-y≤3
,則z=x+2y的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=1+logax(a>0,a≠1)的圖象恒過定點A,若點A在直線mx+ny-2=0上,則m2+n2的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知矩形ABCD的頂點都在半徑為R的球O的球面上,AB=6,BC=2
3
,棱錐O-ABCD的體積為8
3
,則球O的表面積為( 。
A、16πB、32
C、48πD、64π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
1
2
x-1,x∈[-2,4]的值域y∈
 

查看答案和解析>>

同步練習(xí)冊答案