在數(shù)1和100之間插入n個(gè)實(shí)數(shù),使得這n+2個(gè)數(shù)構(gòu)成遞增的等比數(shù)列,將這n+2個(gè)數(shù)的乘積記作Tn,再令an=lgTn,(n∈N*),則數(shù)列{an}的通項(xiàng)公式是
 
分析:由題意,數(shù)1和100之間插入n個(gè)實(shí)數(shù),使得這n+2個(gè)數(shù)構(gòu)成遞增的等比數(shù)列,將這n+2個(gè)數(shù)的乘積記作Tn,由等比數(shù)列的性質(zhì)易得Tn=100
n+2
2
,代入an=lgTn,求數(shù)列{an}的通項(xiàng)公式
解答:解:由題意,數(shù)1和100之間插入n個(gè)實(shí)數(shù),使得這n+2個(gè)數(shù)構(gòu)成遞增的等比數(shù)列,將這n+2個(gè)數(shù)的乘積記作Tn,
由等比數(shù)列的性質(zhì),序號的和相等,則項(xiàng)的乘積也相等知Tn=100
n+2
2

又an=lgTn,(n∈N*),
∴an=lgTn=lg100
n+2
2
=lg10n+2=n+2
故答案為an=n+2
點(diǎn)評:本題考查等差數(shù)列與等比數(shù)列的綜合,解題的關(guān)鍵是熟練掌握等差數(shù)列與等比數(shù)列的性質(zhì),再結(jié)合對數(shù)的運(yùn)用性質(zhì)得出求出數(shù)列{an}的通項(xiàng)公式,本題考查了綜合利用知識轉(zhuǎn)化變形的能力
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)1 和100之間插入n個(gè)實(shí)數(shù),使得這n+2個(gè)數(shù)構(gòu)成遞增的等比數(shù)列,將這n+2個(gè)數(shù)的乘積計(jì)作Tn,再令an=lgTn,n≥1.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=tanan•tanan+1,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)1和100之間插入n個(gè)實(shí)數(shù),使得這n+2個(gè)數(shù)構(gòu)成遞增的等比數(shù)列,將這n+2個(gè)數(shù)的乘積記作Tn,再令an=lgTn,n≥1.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求證:tan(k+1)•tank=
tan(k+1)-tanktan1
-1,k∈N*

(Ⅲ)設(shè)bn=tanan•tanan+1,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:安徽省高考真題 題型:解答題

在數(shù)1和100之間插入n個(gè)實(shí)數(shù),使得這n+2個(gè)數(shù)構(gòu)成遞增的等比數(shù)列,將這n+2個(gè)數(shù)的乘積記作Tn,再令an =lgTn,n≥1。
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=tanan·tanan+1,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省湛江市徐聞中學(xué)高三(上)第九周周考數(shù)學(xué)試卷(解析版) 題型:填空題

在數(shù)1和100之間插入n個(gè)實(shí)數(shù),使得這n+2個(gè)數(shù)構(gòu)成遞增的等比數(shù)列,將這n+2個(gè)數(shù)的乘積記作Tn,再令an=lgTn,(n∈N*),則數(shù)列{an}的通項(xiàng)公式是   

查看答案和解析>>

同步練習(xí)冊答案