【題目】方程sin(2x+ )+m=0在(0,π)內(nèi)有相異兩解α,β,則tan(α+β)=( )
A.
B.
C.
D.
【答案】C
【解析】解:∵α、β是方程的相異解,
∴sin(2α+ )+m=0①.
sin(2β+ )+m=0②.
∴①﹣②得sin(2α+ )﹣sin(2β+ )=2cos(α+β+ )sin(α﹣β)=0,
∵α,β∈(0,π),α,β相異,可得:α﹣β∈(﹣π,π),可得:sin(α﹣β)≠0,
∴cos(α+β+ )=0,
∵α+β+ ∈( , ),
∴解得:α+β+ = 或 ,可得α+β= 或 ,
∴tan(α+β)= .
故選:C.
【考點(diǎn)精析】本題主要考查了兩角和與差的正切公式的相關(guān)知識(shí)點(diǎn),需要掌握兩角和與差的正切公式:才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】己知函數(shù)f(x)=sinx+ cosx(x∈R),先將y=f(x)的圖象上所有點(diǎn)的橫坐標(biāo)縮短到原來(lái)的 倍(縱坐標(biāo)不變),再將得到的圖象上所有點(diǎn)向右平行移動(dòng)θ(θ>0)個(gè)單位長(zhǎng)度,得到的圖象關(guān)于直線x= 對(duì)稱,則θ的最小值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知.
(1)若函數(shù)的單調(diào)遞減區(qū)間為,求函數(shù)的圖像在點(diǎn)處的切線方程;
(2)若不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)遞增區(qū)間;
(2)證明:當(dāng)時(shí), ;
(3)確定實(shí)數(shù)的值,使得存在當(dāng)時(shí),恒有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩人做定點(diǎn)投籃游戲,已知甲每次投籃命中的概率均為,甲投籃3次均未命中的概率為,乙每次投籃命中的概率均為,乙投籃2次恰好命中1次的概率為,甲、乙每次投籃是否命中相互之間沒(méi)有影響.
(1)若乙投籃3次,求至少命中2次的概率;
(2)若甲、乙各投籃2次,設(shè)兩人命中的總次數(shù)為,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為 (φ為參數(shù),0≤φ≤π),曲線C2的參數(shù)方程為 (t為參數(shù)).
(1)求C1的普通方程并指出它的軌跡;
(2)以O(shè)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,射線OM:θ= 與半圓C的交點(diǎn)為O,P,與直線l的交點(diǎn)為Q,求線段PQ的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知橢圓.如圖所示,斜率為且不過(guò)原點(diǎn)的直線交橢圓于兩點(diǎn),線段的中點(diǎn)為,射線交橢圓于點(diǎn),交直線于點(diǎn).
(Ⅰ)求的最小值;
(Ⅱ)若,
求證:直線過(guò)定點(diǎn);
(ii)試問(wèn)點(diǎn)能否關(guān)于軸對(duì)稱?若能,求出此時(shí)的外接圓方程;若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com