【題目】已知是公差不為零的等差數(shù)列, 是等比數(shù)列,且,,.
(1)求數(shù)列,的通項公式;
(2)記,求數(shù)列的前項和;
(3)若滿足不等式成立的恰有個,求正整數(shù)的值.
【答案】(1) ,.(2) .(3) .
【解析】分析:(1) 根據(jù),,列出關于首項、,公差與公比的方程組,解方程組可得、,公差與公比的值,從而可得數(shù)列,的通項公式;(2)由(1)可得,利用錯位相減法求和即可的結果;(3) 不等式可化為,先判斷的增減性,可得則時, 中最大的三項值為,由時滿足的共有兩個,可得,由解得,則正整數(shù).
詳解: (1)設的公差為, 的公比為,
,;,;
由,可得,,
由可得,
則,,
則,;
(2) ,
作差可得 ,
則 ;
(3) 不等式可化為,
即 ,即,
,時一定成立,
則時,滿足的共有兩個,此時,,
即滿足的共有兩個,
令,,
,
則時,
時, ,
,,,,
則時, 中最大的三項值為,
由時滿足的共有兩個,可得,
由解得,則正整數(shù).
科目:高中數(shù)學 來源: 題型:
【題目】某科研小組有20個不同的科研項目,每年至少完成一項。有下列兩種完成所有科研項目的計劃:
A計劃:第一年完成5項,從第一年開始,每年完成的項目不得少于次年,直到全部完成為止;
B計劃:第一年完成項數(shù)不限,從第一年開始,每年完成的項目不得少于次年,恰好5年完成所有項目。
那么,按照A計劃和B計劃所安排的科研項目不同完成順序的方案數(shù)量
A. 按照A計劃完成的方案數(shù)量多
B. 按照B計劃完成的方案數(shù)量多
C. 按照兩個計劃完成的方案數(shù)量一樣多
D. 無法判斷哪一種計劃的方案數(shù)量多
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知是圓上任意一點,過作軸的垂線段, 為垂足.當點在圓上運動時,線段中點的軌跡為曲線(包括點和點),為坐標原點.
(Ⅰ)求曲線的方程;
(Ⅱ)直線與曲線相切,且與圓相交于兩點,當的面積最大時,試求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給出下列四個命題:①若,則;②若,則;③若,則;④若, 且,則的最小值為9;其中正確命題的序號是______(將你認為正確的命題序號都填上).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中
(1)當時,求函數(shù)在處的切線方程;
(2)若函數(shù)在定義域上有且只有一個極值點,求實數(shù)的取值范圍;
(3)若對任意恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校學生研究學習小組發(fā)現(xiàn),學生上課的注意力指標隨著聽課時間的變化而變化,老師講課開始時,學生的興趣激增;接下來學生的興趣將保持較理想的狀態(tài)一段時間,隨后學生的注意力開始分散.設表示學生注意力指標.
該小組發(fā)現(xiàn)隨時間(分鐘)的變化規(guī)律(越大,表明學生的注意力越集中)如下:(且).
若上課后第分鐘時的注意力指標為,回答下列問題:
()求的值.
()上課后第分鐘和下課前分鐘比較,哪個時間注意力更集中?并請說明理由.
()在一節(jié)課中,學生的注意力指標至少達到的時間能保持多長?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本題滿分12分)已知極坐標系的極點與直角坐標系的原點重合,極軸與直角坐標系的x軸的正半軸重合,且兩個坐標系的單位長度相同.已知直線l的參數(shù)方程為(t為參數(shù)),曲線C的極坐標方程為.
(Ⅰ)若直線l的斜率為-1,求直線l與曲線C交點的極坐標;
(Ⅱ)若直線l與曲線C相交弦長為,求直線l的參數(shù)方程(標準形式).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com