2.在直角坐標xOy中,${C_1}:\left\{{\begin{array}{l}{x=t}\\{y=t+5}\end{array}}\right.(t$為參數(shù)),在以坐標原點為極點,x軸正半軸為極軸的極坐標系中,曲線${C_2}:{ρ^2}+2{ρ^2}{sin^2}θ-3=0$.
(1)求C1的普通方程與C2的參數(shù)方程;
(2)根據(jù)(1)中你得到的方程,求曲線C2上任意一點P到C1的最短距離,并確定取得最短距離時P點的直角坐標.

分析 (1)消去參數(shù)t即可得到普通方程;利用sin2α+cos2α=1即可得出其參數(shù)方程C2;
(2)設(shè)$P(\sqrt{3}cosα,sinα)(α∈[0,2π))$,根據(jù)點到直線的距離公式確定d,從而得到點P的坐標.

解答 解:(1)由${C_1}:\left\{{\begin{array}{l}{x=t}\\{y=t+5}\end{array}}\right.(t$為參數(shù))消去參數(shù)t,得
C1:x-y+5=0,
曲線C2的普通方程是$\frac{{x}^{2}}{3}$+y2=1,則
${C_2}:\left\{{\begin{array}{l}{x=\sqrt{3}cosα}\\{y=sinα}\end{array}}\right.(α$為參數(shù));
(2)設(shè)$P(\sqrt{3}cosα,sinα)(α∈[0,2π))$,點P到直線x-y+5=0的距離$d=\frac{{|{\sqrt{3}cosα-sinα+5}|}}{{\sqrt{2}}}=\frac{{|{2cos(α+\frac{π}{6})+5}|}}{{\sqrt{2}}}≥\frac{3}{{\sqrt{2}}}=\frac{{3\sqrt{2}}}{2}$,
當$cos(α+\frac{π}{6})=-1,α=\frac{5π}{6}$時,即$P(-\frac{3}{2},\frac{1}{2})$時,最短距離為$\frac{{3\sqrt{2}}}{2}$.

點評 本題考查了參數(shù)方程化為普通方程、極坐標方程化為直角坐標方程、點到直線的距離公式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.等比數(shù)列{an}中,a8=1,公差q=$\frac{1}{2}$,則該數(shù)列前8項的和S8=( 。
A.254B.255C.256D.512

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.將直角坐標(1,1)轉(zhuǎn)化為極坐標為( 。
A.$({1,\frac{π}{4}})$B.$({\sqrt{2},\frac{π}{4}})$C.$({\sqrt{2},\frac{3π}{4}})$D.$({\sqrt{2},-\frac{π}{4}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.如圖,二面角α-AB-β的大小為600,棱上有A、B兩點,直線AC、BD分別在這個二面角的兩個半平面內(nèi),且都垂直于AB,已知AB=4,AC=6,BD=8,則直線AB與CD所成角的余弦值為( 。
A.$\frac{{2\sqrt{17}}}{17}$B.$\frac{{\sqrt{17}}}{17}$C.$\frac{{\sqrt{221}}}{17}$D.$\frac{{4\sqrt{17}}}{17}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.設(shè)數(shù)列{an}是首項為1,公比為-3的等比數(shù)列a1+|a2|+a3+|a4|+a5=121.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在標準情況下,同時建立直角坐標系與極坐標系已知圓:ρ=4cosθ,直線$\left\{{\begin{array}{l}{x=a-\frac{{\sqrt{2}}}{2}t}\\{y=\frac{{\sqrt{2}}}{2}t}\end{array}}\right.$.
(1)求圓的參數(shù)方程;
(2)若直線與圓相切,求a及直線的極坐標方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知直線l:x+2y=0,圓C:x2+y2-6x-2y-15=0,求直線l被圓C所截得的線段的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.求與圓C:x2+(y+2)2=3相切,且在x軸和y軸上截距相等的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)過點(1,$\frac{\sqrt{3}}{2}$),且離心率為$\frac{\sqrt{3}}{2}$.
(1)求橢圓C的標準方程;
(2)若點P與點Q均在橢圓C上,且P,Q關(guān)于原點對稱,問:橢圓上是否存在點M(點M在第一象限),使得△PQM為等邊三角形?若存在,求出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案