7.已知點(diǎn)A(3,4),B(2,6),向量$\overrightarrow{EF}$=(-1,λ),若$\overrightarrow{EF}$•$\overrightarrow{AB}$=0,則實(shí)數(shù)λ的值為( 。
A.-2B.2C.-$\frac{1}{2}$D.$\frac{1}{2}$

分析 利用向量的坐標(biāo)運(yùn)算性質(zhì)、向量垂直與數(shù)量積的關(guān)系即可得出.

解答 解:$\overrightarrow{AB}$=(-1,2),
∵$\overrightarrow{EF}$•$\overrightarrow{AB}$=0,則1+2λ=0,解得$λ=-\frac{1}{2}$.
故選:C.

點(diǎn)評(píng) 本題考查了向量的坐標(biāo)運(yùn)算性質(zhì)、向量垂直與數(shù)量積的關(guān)系,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知a>0,且a≠1,函數(shù)$f(x)=\frac{5{a}^{x}+3}{{a}^{x}+1}+ln(\sqrt{1+4{x}^{2}}-2x)(-1≤x≤1)$,設(shè)函數(shù)f(x)的最大值為M,最小值為N,則(  )
A.M+N=8B.M+N=10C.M-N=8D.M-N=10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.各項(xiàng)都是正數(shù)的等比數(shù)列{an}中,3a1,$\frac{1}{2}$a3,2a2成等差數(shù)列,則$\frac{{a}_{10}+{a}_{12}+{a}_{15}+{a}_{19}+{a}_{20}+{a}_{23}}{{a}_{8}+{a}_{10}+{a}_{13}+{a}_{17}+{a}_{18}+{a}_{21}}$=9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.若隨機(jī)變量ξ~B(n,p),且Eξ=300,Dξ=200,則p=( 。
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.在直角坐標(biāo)系中,直線x+$\sqrt{3}$y+3=0的傾斜角是( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2}{3}π$D.$\frac{5}{6}π$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.lg$\sqrt{100}$+$\sqrt{(π-4)^{2}}$=5-π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)f(x)=sin2ωx-$\sqrt{3}$cos2ωx(ω>0),且y=f(x)的最小正周期為π.
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)已知△ABC的內(nèi)角A、B、C的對(duì)邊分別為a,b,c,角C為銳角,向量$\overrightarrow{a}$=(a,-2)和$\overrightarrow$=(b,3)垂直,且f(C)=$\sqrt{3}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知i為虛數(shù)單位,復(fù)數(shù)z=$\frac{3-4i}{2+i}$在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知f(x)=ln(x+1)-$\frac{ax}{x+1}$(a∈R).
(1)求證:a≤1且x≥0時(shí),f(x)≥0恒成立;
(2)設(shè)正項(xiàng)數(shù)列{an}滿足a1=1,an=ln(an-1+1)(n≥2),求證:$\frac{1}{n}$≤an≤$\frac{3}{n+2}$(n∈N*).

查看答案和解析>>

同步練習(xí)冊(cè)答案