已知命題:“?x∈[-2,1],使x2+2x+a≥0”為真命題,則a的取值范圍是
 
考點(diǎn):全稱命題
專題:簡(jiǎn)易邏輯
分析:求出x∈[-2,1],x2+2x的最小值,然后利用命題是真命題即可求出a的范圍.
解答: 解:x∈[-2,1],y=x2+2x的對(duì)稱軸是x=-1,表達(dá)式的最小值為:a-1.
“?x∈[-2,1],使x2+2x+a≥0”為真命題,
∴a≥1.
故答案為:{a|a≥1}.
點(diǎn)評(píng):本題考查命題的真假的判斷與應(yīng)用,二次函數(shù)的最值問題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

水庫(kù)的蓄水量隨時(shí)間而變化,現(xiàn)用t表示時(shí)間,以月為單位,年初為起點(diǎn),根據(jù)歷年數(shù)據(jù),某水庫(kù)的蓄水量(單位:億立方米)關(guān)于t的近似函數(shù)關(guān)系式為:V(t)=
(-t2+14t-40)e
1
4
t
+50(0<t≤10)
4(t-10)(3t-41)+50(10<t≤12)

(1)該水庫(kù)的蓄水量小于50的時(shí)期稱為枯水期,以t表示第t月份(t=1,2,3,…,12),問:同一年內(nèi)哪些月份是枯水期?
(2)求一年內(nèi)哪個(gè)月份該水庫(kù)的蓄水量最大,并求最大蓄水量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知一個(gè)圓柱和一個(gè)圓錐等底等高,如圖,點(diǎn)O為底面的圓心,點(diǎn)P為圓錐的頂點(diǎn).若圓柱的高等于它的底面直徑.
(1)求證:圓柱的任意一條母線和圓錐的任意一條母線所成的角都相等;
(2)求圓柱的全面積和圓錐的全面積的比值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

第七屆國(guó)際數(shù)學(xué)教育大會(huì)的會(huì)徽的主體是由一連串直角三角形演變而成,其中OA=AB=BC=CD=DE=EF=FG=GH=HI=1,若將圖2的直角三角形繼續(xù)作下去,并記OA、OB、…、OI、…的長(zhǎng)度所構(gòu)成的數(shù)列為{an}.

(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列bn=
1
an+1+an
的前n項(xiàng)和Sn,Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=2px的焦點(diǎn)F與雙曲線
x2
7
-
y2
9
=1的右焦點(diǎn)重合,拋物線的準(zhǔn)線與x軸的焦點(diǎn)為K,點(diǎn)A在拋物線上,且|AK|=
2
|AF|,則△AFK的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知∠A,∠B,∠C的對(duì)邊長(zhǎng)分別為a,b,c,且S△ABC=a2-(b-c)2,則tan
A
2
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在x軸的正方向上,從左向右依次取點(diǎn)列{Aj},j=1,2…,以及在第一象限內(nèi)的拋物線y2=
3
2
x上從左向右依次取點(diǎn)列{Bk},k=1,2…,使△Ak-1BkAk(k=1,2…)都是等邊三角形,其中A0是坐標(biāo)原點(diǎn),則第2005個(gè)等邊三角形的邊長(zhǎng)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tanα=2,則
6sinα+cosα
3sinα-2cosα
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,若|
BA
+
BC
|=|
AC
|,則△ABC的形狀為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案