1.已知函數(shù)f(x)=$\frac{a}{x}$+lnx-1.
(1)當(dāng)a=2時,求f(x)在(1,f(1))處的切線方程;
(2)若a>0,且對x∈(0,+∞)時,f(x)>0恒成立,求實數(shù)a的取值范圍.

分析 (1)求出函數(shù)的導(dǎo)數(shù),計算f(1),f′(1),從而求出切線方程即可;
(2)分離參數(shù),得到a>x(1-lnx)對x∈(0,+∞)恒成立,設(shè)g(x)=x(1-lnx),根據(jù)函數(shù)的單調(diào)性求出g(x)的最大值,從而求出a的范圍即可.

解答 解:(1)a=2時,$f(x)=\frac{2}{x}+lnx-1$,
所以$f'(x)=-\frac{2}{x^2}+\frac{1}{x}$,則f'(1)=-1,
又f(1)=1,所以切線方程為y-1=-(x-1),即x+y-2=0.
(2)因為a>0,且對x∈(0,2e]時,f(x)>0恒成立,
即$\frac{a}{x}+lnx-1>0$對x∈(0,+∞)恒成立,
所以a>x(1-lnx)對x∈(0,+∞)恒成立.
設(shè)g(x)=x(1-lnx)=x-xlnx,x∈(0,+∞),
則g'(x)=1-lnx-1=-lnx,
當(dāng)0<x<1時,g'(x)>0,g(x)為增函數(shù);
當(dāng)x>1時,g'(x)<0,g(x)為減函數(shù);
所以g(x)max=g(1)=1-ln1=1,
則實數(shù)a的取值范圍是(1,+∞).

點評 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用以及切線方程問題,是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在平面直角坐標(biāo)系xOy中,以O(shè)為極點,x軸的正半軸為極軸建立極坐標(biāo)系.直線l:$\sqrt{2}$ρsin(θ-$\frac{π}{4}$)=m(m∈R),圓C的參數(shù)方程為$\left\{\begin{array}{l}{x=1+3cost}\\{y=-2+3sint}\end{array}\right.$(t為參數(shù)).當(dāng)圓心C到直線l的距離為$\sqrt{2}$時,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.下列命題中,正確的命題是( 。
A.平行于同一直線的兩個平面平行
B.共點的三條直線只能確定一個平面
C.若一個平面中有無數(shù)條直線與另一個平面平行,則這兩個平面平行
D.存在兩條異面直線同時平行于同一個平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.拋物線y2=2x的焦點為F,點P在拋物線上,點O為坐標(biāo)系原點,若|PF|=3,則|PO|等于( 。
A.$\frac{3\sqrt{5}}{2}$B.3$\sqrt{3}$C.$\frac{5\sqrt{5}}{2}$D.4$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.某工廠對200個電子元件的使用壽命進行檢查,按照使用壽命(單位:h)可以把這一批電子元件分成第一組[100,200],第二組(200,300],第三組(300,400],第四組(400,500],第五組(500,600],第六組(600,700],由于工作不慎將部分?jǐn)?shù)據(jù)丟失,現(xiàn)有以下部分圖表:
 分組[100,200](200,300](300,400] (400,500](500,600] (600,700]
 頻數(shù) B 30 E F 20 H
頻率  C D 0.2 0.4 G I
(1)求圖2中的A及表格中的B,C,D,E,F(xiàn),G,H,I的值;
(2)求圖中陰影部分的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.執(zhí)行如圖所示的程序框圖,則輸出S=( 。
A.26B.247C.120D.57

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.執(zhí)行如圖所示的程序框圖,則輸出的Z值為( 。 
A.64B.6C.8D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知α∈(0,π),$sinα+cosα=\frac{1}{5}$.求sin2α和sinα-cosα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知冪函數(shù)f(x)的圖象經(jīng)過點$({\frac{1}{2},8})$,則f(3)=$\frac{1}{27}$.

查看答案和解析>>

同步練習(xí)冊答案