已知θ∈[π,
4
],則
1-sin2θ
-
1+sin2θ
可化簡為
 
考點:二倍角的正弦
專題:計算題,三角函數(shù)的求值
分析:由角的范圍可推出sinθ<cosθ,以及sinθ+cosθ<0,化簡要求的式子,求得最簡結(jié)果即可.
解答: 解:因為θ∈[π,
4
],
∴sinθ>cosθ,sinθ+cosθ<0.
所以
1-sin2θ
-
1+sin2θ
=|sinθ-cosθ|-|sinθ+cosθ|=2sinθ,
故答案為:2sinθ.
點評:本題主要考查同角三角函數(shù)的基本關(guān)系,二倍角公式的應(yīng)用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點A(4,4,0),B(3,a,a-2),且|AB|=
3

(1)若點C的坐標(biāo)為(2,2,2),求證:A,B,C三點共線.
(2)若點D的坐標(biāo)為(5,4,1),試判斷△ABD的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lg(ax-bx)+2x中,常數(shù)a、b滿足a>1>b>0,且a=b+1,那么f(x)>2的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的前Sn項和為Sn,a1=3,{bn}為等比數(shù)列,且b1=1,bn>0,b2+S2=10,S5=5b3+3a2,n∈N*,求數(shù)列{an},{bn}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=(m2-m-1)xm是冪函數(shù),且在x∈(0,+∞)上為減函數(shù),則實數(shù)m的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知p:
1
x-2
≥1,q:a-1<x<a+1,若p是q的充分不必要條件,則實數(shù)a的取值范圍為( 。
A、(-∞,3]
B、[2,3]
C、(2,3]
D、(2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中,既是奇函數(shù)又是增函數(shù)的是(  )
A、y=-x
B、y=x3+1
C、y=sinx
D、y=x|x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)是偶函數(shù)的是( 。
A、y=sinx
B、y=cosx
C、y=tanx
D、y=cos(x+
π
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2+2x-3<0},B={x|-
2
<x<1},則A∩B=( 。
A、∅
B、{x|-3<x<1}
C、{x|-
2
<x<1}
D、A

查看答案和解析>>

同步練習(xí)冊答案