7.已知$\overrightarrow{AB}$=(6,1),$\overrightarrow{CD}$=(x,-3),若$\overrightarrow{AB}$∥$\overrightarrow{CD}$,則x=-18.

分析 利用向量共線定理即可得出.

解答 解:∵$\overrightarrow{AB}$∥$\overrightarrow{CD}$,∴-18-x=0,解得x=-18.
故答案為:-18.

點(diǎn)評(píng) 本題考查了向量共線定理,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.如圖,在三棱錐ABC-A1B1C1中,側(cè)面ACC1A1⊥底面ABC,△A1AC為等邊三角形,AC⊥A1B.
(1)求證:AB=BC;
(2)若∠ABC=90°,求A1B與平面BCC1B1所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.某商家在網(wǎng)上銷售一種商品,從該商家的銷售數(shù)據(jù)中抽取6天的價(jià)格與銷量的對(duì)應(yīng)數(shù)據(jù),如下表所示:
價(jià)格x(百元)456789
銷量y(件/天)908483807568
(Ⅰ)由表中數(shù)據(jù),看出可用線性回歸模型擬合y與x的關(guān)系,試求y關(guān)于x的線性回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$,并預(yù)測(cè)當(dāng)價(jià)格為1000元時(shí),每天的商品的銷量為多少;
(Ⅱ)若以從這6天中隨機(jī)抽取2天,至少有1天的價(jià)格高于700元的概率作為客戶A,B購(gòu)買此商品的概率,而客戶C,D購(gòu)買此商品的概率均為$\frac{1}{2}$,設(shè)這4位客戶中購(gòu)買此商品的人數(shù)為X,求X的分布列和數(shù)學(xué)期望.
參考數(shù)據(jù):$\sum_{i=1}^{6}$xiyi=3050,$\sum_{i=1}^{6}$x${\;}_{i}^{2}$=271.
參考公式:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\stackrel{∧}{y}$-$\stackrel{∧}$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.在直角△ABC中,斜邊BC=6,以BC中點(diǎn)O為圓心,作半徑為2的圓,分別交BC于兩點(diǎn),若|AP|=m,|AQ|=n,則m2+n2=26.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.如圖,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=AA1=2,E是BC中點(diǎn).
(1)求證:A1B∥平面AEC1;
(2)在棱AA1上存在一點(diǎn)M,滿足B1M⊥C1E,求平面MEC1與平面ABB1A1所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知函數(shù)f(x)=aln2x+bx在x=1處取得最大值ln2-1,則a=1,b=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的離心率是$\frac{{\sqrt{2}}}{2}$,且過(guò)點(diǎn)$P(\sqrt{2},1)$.直線y=$\frac{{\sqrt{2}}}{2}$x+m與橢圓C相交于A,B兩點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)求△PAB的面積的最大值;
(Ⅲ)設(shè)直線PA,PB分別與y軸交于點(diǎn)M,N.判斷|PM|,|PN|的大小關(guān)系,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.復(fù)數(shù)${({1+i})^2}+\frac{2}{1+i}$的共軛復(fù)數(shù)的虛部是( 。
A.iB.-iC.-1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.在平面直角坐標(biāo)系xOy中,雙曲線$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{3}$=1的離心率是$\frac{\sqrt{7}}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案