13.不等式$\frac{x+5}{{{{(x-1)}^2}}}≥1$的解集是(  )
A.[-4,1]B.[-1,4]C.[-4,1)D.[-1,1)∪(1,4]

分析 分母大于0,不等式$\frac{x+5}{{{{(x-1)}^2}}}≥1$轉(zhuǎn)化x+5≥(x-1)2不等式求解即可.

解答 解:∵分母大于0,
∴不等式$\frac{x+5}{{{{(x-1)}^2}}}≥1$轉(zhuǎn)化x+5≥(x-1)2,且x-1≠0,即x+5≥x2-2x+1,
解得:-1≤x≤4,且x≠1,
∴原不等式的解集為[-1,1)∪(1,4].
故選D.

點(diǎn)評(píng) 本題考查分式不等式的解法,基本知識(shí)的考查.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.某班班會(huì)準(zhǔn)備從含甲、乙的6名學(xué)生中選取4人發(fā)言,要求甲、乙兩人至少有一人參加,那么不同的發(fā)言順序有(  )
A.336種B.320種C.192種D.144種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在下列各區(qū)間中,存在著函數(shù)f(x)=x3+4x-3的零點(diǎn)的區(qū)間是(  )
A.[-1,0]B.[0,1]C.[1,2]D.[2,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在△ABC中,$B({-2\sqrt{3},0})$,$C({2\sqrt{3},0})$,且△ABC的周長(zhǎng)為$8+4\sqrt{3}$.
(1)求點(diǎn)A的軌跡方程C;
(2)過點(diǎn)P(2,1)作曲線C的一條弦,使弦被這點(diǎn)平分,求此弦所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知數(shù)列{an}的前n項(xiàng)和為Sn,${S_n}=\frac{4}{3}({a_n}-1)$,則數(shù)列$\{a_n^2\}$的前n項(xiàng)和Tn=$\frac{{1{6^{n+1}}-16}}{15}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.對(duì)函數(shù)y=x2-4x+6,
(1)指出函數(shù)圖象的開口方向、對(duì)稱軸方程、頂點(diǎn)坐標(biāo);
(2)說明圖象由y=x2的圖象經(jīng)過怎樣平移得來;
(3)求函數(shù)的最大值或最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.定義:已知函數(shù)f(x)在[m,n](m<n)上的最小值為t,若t≤m恒成立,則稱函數(shù)f(x)在[m,n](m<n)上具有“DK”性質(zhì).例如函數(shù)$y=\sqrt{x}$在[1,9]上就具有“DK”性質(zhì).
(1)判斷函數(shù)f(x)=x2-2x+2在[1,2]上是否具有“DK”性質(zhì)?說明理由;
(2)若g(x)=x2-ax+2在[a,a+1]上具有“DK”性質(zhì),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知集合A={x∈R|ax2+2x+1=0,a≠0.a(chǎn)∈R.}中只有一個(gè)元素(A也可以叫做單元素集合),求a的值,并求出這個(gè)元素.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若cos($\frac{π}{6}$-θ)=$\frac{\sqrt{3}}{3}$,則sin2(θ-$\frac{π}{6}$)=$\frac{2}{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案