若某幾何體的三視圖(單位:cm)如圖所示,則該幾何體的體積等于( 。
A、10cm3
B、20cm3 
C、30cm3
D、40cm3
考點(diǎn):由三視圖求面積、體積
專題:計(jì)算題,空間位置關(guān)系與距離
分析:由三視圖知幾何體為直三削去一個(gè)三棱錐,畫出其直觀圖,根據(jù)棱柱的高為5;底面為直角三角形,直角三角形的直角邊長(zhǎng)分別為3、4,計(jì)算三棱柱與三棱錐的體積,再求差可得答案.
解答: 解:由三視圖知幾何體為三角形削去一個(gè)三棱錐如圖:

棱柱的高為5;底面為直角三角形,直角三角形的直角邊長(zhǎng)分別為3、4,
∴幾何體的體積V=
1
2
×3×4×5-
1
3
×
1
2
×3×4×5=20(cm3).
故選B.
點(diǎn)評(píng):本題考查了由三視圖求幾何體的體積,解題的關(guān)鍵是判斷幾何體的形狀及數(shù)據(jù)所對(duì)應(yīng)的幾何量.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD為梯形,AB∥DC,AB⊥BC,PA=AB=BC=
1
2
DC
,點(diǎn)E在棱PB上,且
PE
EB

(1)當(dāng)λ=2時(shí),求證:PD∥面EAC;
(2)若直線PA與平面EAC所成角為30°,求實(shí)數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓E:(x-1)2+(y-2)2=25直線l:(2m+1)x+(m+1)y-7m-4=0(m∈R).
(1)證明不論m取什么實(shí)數(shù),直線與圓恒交于兩點(diǎn);
(2)設(shè)P(x,y)是圓E上任意一點(diǎn),求x+y的取值范圍.
(3)已知AC、BD為圓C的兩條相互垂直的弦,垂足為M(3,1),求四邊形ABCD的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理)不等式|x-3|<2x-1的解集是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l上的兩點(diǎn)A(-4,1),B(x,-3)且直線l的傾斜角為135°,則x=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列積分中①
e
1
1
x
dx;②
2
-2
-2xdx
;③∫
 
2
0
4-x2
π
dx;④
π
2
0
cos2x
cosx-sinx
dx
,積分值等于1的個(gè)數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
,
b
都是單位向量,且|
a
-
b
|=
2
,則
a
(
a
+
b
)
的值為(  )
A、-1
B、
2
C、0
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式
x-2
x-3
>0的解集是( 。
A、(2,3)
B、(3,+∞)
C、(2,+∞)
D、(-∞,2)(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,內(nèi)角A,B,C滿足4sin Asin C-2cos (A-C)=1.
(Ⅰ) 求角B的大。
(Ⅱ) 求sinA+2sinC的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案