設數(shù)列{an}的各項都為正數(shù),其前n項和為Sn,已知對任意n∈N*,Sn是an2和an的等差中項.
(Ⅰ)證明數(shù)列{an}為等差數(shù)列,并求數(shù)列{an}的通項公式;
(Ⅱ)證明++…+<2;
(Ⅲ)設集合M={m|m=2k,k∈Z,且1000≤k<1500},若存在m∈M,使對滿足n>m的一切正整數(shù)n,不等式Sn-1005>恒成立,求這樣的正整數(shù)m共有多少個?
【答案】分析:(Ⅰ)當n=1時求得a1;當n≥2時根據(jù)2an=2Sn-2Sn-1化簡整理得an-an-1=1判斷數(shù)列{an}是首項為1,公差為1的等差數(shù)列.
(Ⅱ)把(Ⅰ)求得的an代入Sn進而可根據(jù)裂項法進行求和得++…+=2(1-)<2;原式得證.
(Ⅲ)Sn-1005>,求得n的范圍.進而可得集合M,依據(jù)m∈M,所以m=2010,2012,,2998均滿足條件,且這些數(shù)組成首項為2010,公差為2的等差數(shù)列,進而求得k
解答:解:(Ⅰ)由已知,2Sn=an2+an,且an>0.,當n=1時,2a1=a12+a1,解得a1=1.
當n≥2時,有2Sn-1=an-12+an-1.于是2Sn-2Sn-1=an2-an-12+an-an-1,即2an=an2-an-12+an-an-1
.于是an2-an-12=an+an-1,即(an+an-1)(an-an-1)=an+an-1
因為an+an-1>0,所以an-an-1=1(n≥2).
故數(shù)列{an}是首項為1,公差為1的等差數(shù)列,且an=n.
(Ⅱ)因為an=n,則Sn==2(-).
所以+++=2[(1-)+(-)++(-)]=2(1-)<2;
(Ⅲ)由Sn-1005>,得-1005>,即>1005,所以n>2010.
由題設,M={2000,2002,,2008,2010,2012,,2998},
因為m∈M,所以m=2010,2012,,2998均滿足條件,且這些數(shù)組成首項為2010,公差為2的等差數(shù)列.
設這個等差數(shù)列共有k項,則2010+2(k-1)=2998,
解得k=495.
故集合M中滿足條件的正整數(shù)m共有495個.
點評:本題主要考查等差數(shù)列的性質特別是等差數(shù)列的通項公式.考查了學生分析問題和解決問題的能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an}的各項都是正數(shù),且對任意n∈N+,都有a13+a23+a33+…+an3=Sn2,其中Sn為數(shù)列{an}的前n項和.
(Ⅰ)求證:an2=2Sn-an
(Ⅱ)求數(shù)列{an}的通項公式;
(Ⅲ)設bn=3n+(-1)n-1λ•2an(λ為非零整數(shù),n∈N*)試確定λ的值,使得對任意n∈N*,都有bn+1>bn成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an}的各項都是正數(shù),Sn是其前n項和,且對任意n∈N*都有an2=2Sn-an
(1)求數(shù)列{an}的通項公式;
(2)若bn=(2n+1)2an,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an}的各項均為正實數(shù),bn=log2an,若數(shù)列{bn}滿足b2=0,bn+1=bn+log2p,其中p為正常數(shù),且p≠1.
(1)求數(shù)列{an}的通項公式;
(2)是否存在正整數(shù)M,使得當n>M時,a1•a4•a7•…•a3n-2>a16恒成立?若存在,求出使結論成立的p的取值范圍和相應的M的最小值;若不存在,請說明理由;
(3)若p=2,設數(shù)列{cn}對任意的n∈N*,都有c1bn+c2bn-1+c3bn-2+…+cnb1=-2n成立,問數(shù)列{cn}是不是等比數(shù)列?若是,請求出其通項公式;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an}的各項均為正數(shù),它的前n項和為Sn,點(an,Sn)在函數(shù)y=
1
8
x2+
1
2
x+
1
2
的圖象上,數(shù)列{bn}的通項公式為bn=
an+1
an
+
an
an+1
,其前n項和為Tn
(1)求an;   
(2)求證:Tn-2n<2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•江蘇一模)設數(shù)列{an}的各項均為正數(shù),其前n項的和為Sn,對于任意正整數(shù)m,n,Sm+n=
2a2m(1+S2n)
-1
恒成立.
(1)若a1=1,求a2,a3,a4及數(shù)列{an}的通項公式;
(2)若a4=a2(a1+a2+1),求證:數(shù)列{an}成等比數(shù)列.

查看答案和解析>>

同步練習冊答案