如圖3-3-15,A是圓上固定的一點(diǎn),在圓上其他位置任取一點(diǎn)A′,連結(jié)AA′,它是一條弦,它的長(zhǎng)度大于等于半徑長(zhǎng)度的概率為(    )

     圖3-3-15

A.          B.          C.         D.

解析:這是一個(gè)幾何概型的題目,要使弦長(zhǎng)大于半徑,只要A′選在如下圖所示優(yōu)弧優(yōu)弧上.

AA1′=AA2′=R,

則OA=OA1′=AA1′=R,

∵∠A1′OA=60°,

同理∠AOA2′=60°,

∴∠A1′OA2′=240°,它所對(duì)的弧長(zhǎng)為圓周,故選B.

答案:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某中學(xué)將100名高一新生分成水平相同的甲、乙兩個(gè)“平行班”,每班50人.陳老師采用A、B兩種不同的教學(xué)方式分別在甲、乙兩個(gè)班級(jí)進(jìn)行教改實(shí)驗(yàn).為了解教學(xué)效果,期末考試后,陳老師甲、乙兩個(gè)班級(jí)的學(xué)生成績(jī)進(jìn)行統(tǒng)計(jì)分析,畫(huà)出頻率分布直方圖(如圖).記成績(jī)不低于90分者為“成績(jī)優(yōu)秀”.
(1)從乙班隨機(jī)抽取2名學(xué)生的成績(jī),記“成績(jī)優(yōu)秀”的個(gè)數(shù)為ξ,求ξ的分布列和數(shù)學(xué)期望;
(2)根據(jù)頻率分布直方圖填寫(xiě)下面2×2列聯(lián)表,并判斷是否有95%的把握認(rèn)為:“成績(jī)優(yōu)秀”與教學(xué)方式有關(guān)
甲班(A方式) 乙班(B方式) 總計(jì)
成績(jī)優(yōu)秀
成績(jī)不優(yōu)秀
總計(jì)
附:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

P≥(k2≥k) 0.25 0.15 0.10 0.05 0.025
k 1.323 2.072 2.706 3.814 5.024

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖2-3-15,已知△ABC內(nèi)接于⊙O,AB為直徑,∠CAE=∠B.

2-3-15

(1)求證:AE與⊙O相切于點(diǎn)A.

(2)當(dāng)AB不是直徑時(shí),其他條件不變,結(jié)論還成立嗎?若成立,請(qǐng)證明;若不成立,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖1-3-15,在四面體ABCD中,截面AEF經(jīng)過(guò)四面體的內(nèi)切球(與四個(gè)面都相切的球)球心O,且與BC,DC分別截于E、F,如果截面將四面體分成體積相等的兩部分,設(shè)四棱錐A—BEFD與三棱錐A—EFC的表面積分別是S1,S2,則必有(    )

圖1-3-15

A.S1<S2                                B.S1>S2

C.S1=S2                                D.S1,S2的大小關(guān)系不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖2-3-15,設(shè)P是正方形ABCD外一點(diǎn),且PA⊥平面ABCD,則平面PAB與平面PBC、平面PAD的位置關(guān)系是(    )

圖2-3-15

A.平面PAB與平面PBC、平面PAD都垂直

B.它們兩兩都垂直

C.平面PAB與平面PBC垂直、與平面PAD不垂直

D.平面PAB與平面PBC、平面PAD都不垂直

查看答案和解析>>

同步練習(xí)冊(cè)答案