7.已知命題p:A={a|?x∈R,x2-ax+2a≥0},命題q:B={a|?x∈[-1,4],2x-a+1≥0},若p∧q為假,p∨q為真,求實數(shù)a的取值范圍.

分析 分別求出p,q為真時的a的范圍,根據(jù)p,q一真一假,得到關于a的不等式組,解出即可.

解答 解:?x∈R,x2-ax+2a≥0,
則△=a2-8a≤0,解得:a∈[0,8],
故p:A=[0,8],
?x∈[-1,4],2x-a+1≥0},
則a≤(2x+1)min=$\frac{3}{2}$,
故q:B=(-∞,$\frac{3}{2}$],
若p∧q為假,p∨q為真,
則p,q一真一假,
則$\left\{\begin{array}{l}{a>8或a<0}\\{a≤\frac{3}{2}}\end{array}\right.$或$\left\{\begin{array}{l}{0≤a≤8}\\{a>\frac{3}{2}}\end{array}\right.$,
解得:a<0或$\frac{3}{2}$<a≤8,
即實數(shù)a的取值范圍是(-∞,0)∪($\frac{3}{2}$,8].

點評 本題考查了符合命題的判斷,考查二次函數(shù)的性質以及函數(shù)恒成立問題,是一道中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

17.函數(shù)f(x)=$\frac{1}{1-2x}$+lg(1+3x)的定義域是( 。
A.(-∞,-$\frac{1}{3}$)B.(-$\frac{1}{3}$,$\frac{1}{2}$)∪($\frac{1}{2}$,+∞)C.($\frac{1}{2}$,+∞)D.($\frac{1}{3}$,$\frac{1}{2}$)∪($\frac{1}{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知$f(x)=\frac{{2{x^2}+a}}{x}$,且f(1)=3.
(1)試求a的值,并用定義證明f(x)在[$\frac{{\sqrt{2}}}{2}$,+∞)上單調遞增;
(2)設關于x的方程f(x)=x+b的兩根為x1,x2,問:是否存在實數(shù)m,使得不等式m2+m+1≥|x1-x2|對任意的$b∈[{2,\sqrt{13}}]$恒成立?若存在,求出m的取值范圍;若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.近年來,手機已經(jīng)成為人們日常生活中不可缺少的產(chǎn)品,手機的功能也日趨完善,已延伸到了各個領域,如拍照,聊天,閱讀,繳費,購物,理財,娛樂,辦公等等,手機的價格差距也很大,為分析人們購買手機的消費情況,現(xiàn)對某小區(qū)隨機抽取了200人進行手機價格的調查,統(tǒng)計如下:
年齡     價格5000元及以上3000元-4999元1000元-2999元1000元以下
45歲及以下1228664
45歲以上3174624
(Ⅰ)完成關于人們使用手機的價格和年齡的2×2列聯(lián)表,再判斷能否在犯錯誤的概率不超過0.025的前提下,認為人們使用手機的價格和年齡有關?
(Ⅱ)如果用分層抽樣的方法從樣本手機價格在5000元及以上的人群中選擇5人調查他的收入狀況,再從這5人中選3人,求3人的年齡都在45歲及以下的概率.
附K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k)0.050.0250.0100.001
k3.8415.0246.63510.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.正四面體ABCD的體積為V,M是正四面體ABCD內部的點,若“${V_{M-ABC}}≥\frac{1}{4}V$”的事件為X,則概率P(X)為( 。
A.$\frac{17}{32}$B.$\frac{37}{64}$C.$\frac{19}{32}$D.$\frac{27}{64}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.某校300名高三學生期中考試數(shù)學成績的頻率分布直方圖如圖所示,由圖中數(shù)據(jù)估計此次數(shù)學成績的眾數(shù)、平均分分別為( 。
A.60、69B.65、71C.65、73D.60、75

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知集合A={x|-4<x<1},B={x|2x≥1}.
(Ⅰ)求A∩B,A∪B;
(II)設函數(shù)$f(x)=\sqrt{4-2x}+{log_2}(2x-1)$的定義域為C,求(∁RA)∩C.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.函數(shù)$y=tanx+\sqrt{πx-2{x^2}}$的定義域是[0,$\frac{π}{2}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知x>1,則不等式x+$\frac{1}{x-1}$的最小值為(  )
A.4B.2C.1D.3

查看答案和解析>>

同步練習冊答案