(本小題滿分14分)
已知各項(xiàng)均為正數(shù)的數(shù)列{an}前n項(xiàng)和為Sn,(p – 1)Sn = p2 – an,n ∈N*,p > 0且p≠1,數(shù)列{bn}滿足bn = 2logpan.
(Ⅰ)若p =,設(shè)數(shù)列的前n項(xiàng)和為Tn,求證:0 < Tn≤4;
(Ⅱ)是否存在自然數(shù)M,使得當(dāng)n > M時(shí),an > 1恒成立?若存在,求出相應(yīng)的M;若不存在,請說明理由.
(Ⅰ)解:由(p – 1)Sn = p2 – an (n∈N*) ①
由(p – 1)Sn – 1 = p2 – an – 1 ②
① – ②得(n≥2)
∵an > 0 (n∈N*)
又(p – 1)S1 = p2 – a1,∴a1 = p
{an}是以p為首項(xiàng),為公比的等比數(shù)列
an = p
bn = 2logpan = 2logpp2 – n
∴bn = 4 – 2n ………… 4分
證明:由條件p =得an = 2n – 2
∴Tn = ①
②
① – ②得
= 4 – 2 ×[來源:Z|xx|k.Com]
= 4 – 2 ×
∴Tn =………… 8分
Tn – Tn – 1 =
當(dāng)n > 2時(shí),Tn – Tn – 1< 0
所以,當(dāng)n > 2時(shí),0 < Tn≤T3 = 3
又T1 = T2 = 4,∴0 < Tn≤4.…………10分
(Ⅱ)解:若要使an > 1恒成立,則需分p > 1和0 < p < 1兩種情況討論
當(dāng)p > 1時(shí),2 – n > 0,n < 2
當(dāng)0 < p < 1時(shí),2 – n < 0,n > 2
∴當(dāng)0 < p < 1時(shí),存在M = 2
當(dāng)n > M時(shí),an > 1恒成立.………… 14分
【解析】略
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
3 |
π |
4 |
π |
4 |
π |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分14分)設(shè)橢圓C1的方程為(a>b>0),曲線C2的方程為y=,且曲線C1與C2在第一象限內(nèi)只有一個(gè)公共點(diǎn)P。(1)試用a表示點(diǎn)P的坐標(biāo);(2)設(shè)A、B是橢圓C1的兩個(gè)焦點(diǎn),當(dāng)a變化時(shí),求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個(gè)。設(shè)g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達(dá)式。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年江西省撫州市教研室高二上學(xué)期期末數(shù)學(xué)理卷(A) 題型:解答題
(本小題滿分14分)
已知=2,點(diǎn)()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設(shè),求及數(shù)列{}的通項(xiàng)公式;
(3)記,求數(shù)列{}的前n項(xiàng)和,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆山東省威海市高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)
某網(wǎng)店對一應(yīng)季商品過去20天的銷售價(jià)格及銷售量進(jìn)行了監(jiān)測統(tǒng)計(jì)發(fā)現(xiàn),第天()的銷售價(jià)格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.
(Ⅰ)寫出銷售額關(guān)于第天的函數(shù)關(guān)系式;
(Ⅱ)求該商品第7天的利潤;
(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省高三下學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)已知的圖像在點(diǎn)處的切線與直線平行.
⑴ 求,滿足的關(guān)系式;
⑵ 若上恒成立,求的取值范圍;
⑶ 證明:()
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com