(2012•山東)定義在R上的函數(shù)f(x)滿足f(x+6)=f(x),當-3≤x<-1時,f(x)=-(x+2)2,當-1≤x<3時,f(x)=x.則f(1)+f(2)+f(3)+…+f(2012)=( 。
分析:由f(x+6)=f(x)可知,f(x)是以6為周期的函數(shù),可根據(jù)題目信息分別求得f(1),f(2),f(3),f(4),f(5),f(6)的值,再利用周期性即可得答案.
解答:解:∵f(x+6)=f(x),
∴f(x)是以6為周期的函數(shù),
又當-1≤x<3時,f(x)=x,
∴f(1)+f(2)=1+2=3,f(-1)=-1=f(5),f(0)=0=f(6);
當-3≤x<-1時,f(x)=-(x+2)2,
∴f(3)=f(-3)=-(-3+2)2=-1,
f(4)=f(-2)=-(-2+2)2=0,
∴f(1)+f(2)+f(3)+f(4)+f(5)+f(6)=1+2-1+0+(-1)+0=1,
∴f(1)+f(2)+f(3)+…+f(2012)
=[f(1)+f(2)+f(3)+…+f(2010)]+f(2011)+f(2012)
=335×1+f(1)+f(2)
=338.
故選B.
點評:本題考查函數(shù)的周期,由題意,求得f(1)+f(2)+f(3)+…+f(6)=是關鍵,考查轉化與運算能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)是定義在實數(shù)集R上的偶函數(shù),且對任意實數(shù)x都有f(x+1)=2f(x)+1,則f(2012)的值是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義在R上的函數(shù)f(x)、g(x)都有反函數(shù),又f(x-1)與g-1(x-3)的圖象關于直線y=x對稱,若g(5)=2009,則f(4)=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•湖北)定義在(-∞,0)∪(0,+∞)上的函數(shù)f(x),如果對于任意給定的等比數(shù)列{an},{f(an)}仍是等比數(shù)列,則稱f(x)為“保等比數(shù)列函數(shù)”.現(xiàn)有定義在(-∞,0)∪(0,+∞)上的如下函數(shù):①f(x)=x2;②f(x)=2x;③f(x)=
|x|
;④f(x)=ln|x|.則其中是“保等比數(shù)列函數(shù)”的f(x)的序號為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•安徽模擬)給出以下命題:
①函數(shù)f(x)=|log2x2|既無最大值也無最小值;
②函數(shù)f(x)=|x2-2x-3|的圖象關于直線x=1對稱;
③若函數(shù)f(x)的定義域為(0,1),則函數(shù)f(x2)的定義域為(-1,1);
④若函數(shù)f(x)滿足|f(-x)|=|f(x)|,則函數(shù)f(x)或是奇函數(shù)或是偶函數(shù);
⑤設f(x)與g(x)是定義在R上的兩個函數(shù),若對任意x1,x2∈R(x1≠x2)有|f(x1)-f(x2)|>|g(x1)-g(x2)|恒成立,且函數(shù)f(x)在R上遞增,則函數(shù)h(x)=f(x)-g(x)在R上遞增.
其中正確的命題是
②④⑤
②④⑤
(寫出所有真命題的序號)

查看答案和解析>>

同步練習冊答案