(2012•瀘州一模)已知函數(shù)f(x)=
x+3
-2
x-1
,(x≠1)
a             ,(x=1)
在x=1處連續(xù),則a的值為(  )
分析:化簡(jiǎn)
lim
x→1
f(x)
等于
lim
x→1
x+3
-2
-(2+
x+3)
•(2-
x+3
)
=
lim
x→1
1
(2+
x+3)
,由此求得
lim
x→1
f(x)
 的值,由題意可得f(1)=
lim
x→1
f(x)
,由此求得a的值.
解答:解:由于
lim
x→1
f(x)
=
lim
x→1
x+3
-2
x-1
=
lim
x→1
x+3
-2
-(2+
x+3)•(2-
x+3
)
=
lim
x→1
-1
-(2+
x+3)
=
lim
x→1
1
(2+
x+3)
=
1
2+2
=
1
4
,
f(1)=a,且函數(shù)f(x)=
x+3
-2
x-1
(x≠1)
a             (x=1)
在x=1處連續(xù),
故有 f(1)=
lim
x→1
f(x)
,即 a=
1
4
,
故選D.
點(diǎn)評(píng):本題主要考查羅比達(dá)法則的應(yīng)用,函數(shù)在某處連續(xù)的定義,利用分段函數(shù)在某處連續(xù)時(shí),則兩段的函數(shù)值在此處相等,屬于基礎(chǔ)題,對(duì)求極限的代數(shù)式進(jìn)行變形是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•瀘州一模)已知函數(shù)f(x)=2sinωx(
3
cosωx-sinωx)(ω>0,x∈R)的最小正周期為π.
(Ⅰ)求ω的值;
(Ⅱ)在△ABC中,角A、B、C所對(duì)的邊分別為a、b、c,若△ABC的面積為
3
3
4
,b=
3
,f(B)=1,求a、c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•瀘州一模)甲、乙、丙三個(gè)同學(xué)同時(shí)報(bào)名參加某重點(diǎn)高校2012年自主招生,高考前自主招生的程序?yàn)槊嬖嚭臀幕瘻y(cè)試,只有面試通過(guò)后才能參加文化測(cè)試,文化測(cè)試合格者即獲得自主招生入選資格.因?yàn)榧、乙、丙三人各有?yōu)勢(shì),甲、乙、丙三人面試通過(guò)的概率分別為0.5,0.6,0.4;面試通過(guò)后,甲、乙、丙三人文化測(cè)試合格的概率分別為0.6,0.5,0.75.
(Ⅰ)求甲、乙、丙三人中只有一人通過(guò)面試的概率;
(Ⅱ)求甲、乙、丙三人各自獲得自主招生入選資格的概率.
(Ⅲ)求甲、乙、丙三人中獲得自主招生入選資格的人數(shù)為ξ,求隨機(jī)變量ξ的分布列及期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•瀘州一模)用一個(gè)邊長(zhǎng)為
2
的正方形硬紙,按各邊中點(diǎn)垂直折起四個(gè)小三角形,做成一個(gè)蛋巢.現(xiàn)將半徑為1的球體放置于蛋巢上,則球體球心與蛋巢底面的距離為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•瀘州一模)如圖,在直三棱柱ABC-A′B′C′中,AB=BC=CA=a,AA′=
2
a
,則AB′與側(cè)面AC′所成角的大小為
30°
30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•瀘州一模)設(shè)z=1+i(i是虛數(shù)單位),則
2
z
+2i
的值為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案