【題目】已知平面向量,,滿足:,的夾角為,||=5,,的夾角為,||=3,則的最大值為_____.
【答案】36
【解析】
設,,,由題意知四點共圓,建立坐標系,求出點的坐標和圓的半徑,設,用表示,根據(jù)范圍和三角和差公式,即可求解.
設,,,
則AB=||=5,AC=||=3,∠ACB,∠APB,
可得P,A,B,C四點共圓.
設△ABC的外接圓的圓心為O,則∠AOB=2∠APB,
由正弦定理可知:2OA5,故OA.
以O為圓心,以OA,OB為坐標軸建立平面坐標系如圖所示:
則A(,0),B(0,).
在△OAC中,由余弦定理可得cos∠AOC,
故sin∠AOC,∴C(,).
設P(cosα,sinα),,
則(cosα,sinα),(cosα,sinα),
∴(cosα)(cosα)sinα(sinα)
=16+12sinα﹣16cosα=16+20(sinαcosα)
=16+20sin(α﹣φ),其中sinφ,cosφ.
∴當α=φ時,取得最大值36.
答案:36.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若曲線在點處的切線方程為,求的值;
(2)當時,求證:;
(3)設函數(shù),其中為實常數(shù),試討論函數(shù)的零點個數(shù),并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)當a∈R時,討論函數(shù)f(x)的單調(diào)性;
(2)對任意的x∈(1,+∞)均有f(x)<ax,若a∈Z,求a的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線Γ的準線方程為.焦點為.
(1)求證:拋物線Γ上任意一點的坐標都滿足方程:
(2)請求出拋物線Γ的對稱性和范圍,并運用以上方程證明你的結(jié)論;
(3)設垂直于軸的直線與拋物線交于兩點,求線段的中點的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在我們的教材必修一中有這樣一個問題,假設你有一筆資金,現(xiàn)有三種投資方案供你選擇,這三種方案的回報如下:
方案一:每天回報元;
方案二:第一天回報元,以后每天比前一天多回報元;
方案三:第一天回報元,以后每天的回報比前一天翻一番.
記三種方案第天的回報分別為,,.
(1)根據(jù)數(shù)列的定義判斷數(shù)列,,的類型,并據(jù)此寫出三個數(shù)列的通項公式;
(2)小王準備做一個為期十天的短期投資,他應該選擇哪一種投資方案?并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ln(ax+b)﹣x(a,b∈R,ab≠0).
(1)討論f(x)的單調(diào)性;
(2)若f(x)≤0恒成立,求ea(b﹣1)的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com