2.已知$\overrightarrow a=(1\;,\;3)$,$\overrightarrow b=(-2\;,\;5)$,則$3\overrightarrow a-2\overrightarrow b$=(  )
A.(2,7)B.(13,-7)C.(7,-1)D.(-1,-1)

分析 根據(jù)向量的坐標運算即可求出.

解答 解:∵$\overrightarrow a=(1\;,\;3)$,$\overrightarrow b=(-2\;,\;5)$,
∴$3\overrightarrow a-2\overrightarrow b$=3(1,3)-2(-2,5)=(3,9)-(-4,10)=(7,-1),
故選:C.

點評 本題考查了向量的坐標運算,屬于基礎(chǔ)題

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

13.已知函數(shù)f(x)=2sinxcosx-$\sqrt{3}$(cos2x-sin2x).
(1)求f(x)的最小正周期;
(2)若f(x0)=$\sqrt{3}$,且x0∈[$\frac{π}{4}$,$\frac{π}{2}$],求x0的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.古有蘇秦、張儀唇槍舌劍馳騁于亂世之秋,今看我一中學子論天、論地、指點江山.現(xiàn)在高二某班需從甲、乙、丙、丁、戊五位同學中,選出四位同學組成重慶一中“口才季”中的一個辯論隊,根據(jù)他們的文化、思維水平,分別擔任一辯、二辯、三辯、四辯,其中四辯必須由甲或乙擔任,而丙與丁不能擔任一辯,則不同組隊方式有( 。
A.12種B.16種C.20種D.24種

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.作函數(shù)y=|1g|x-1||的大致圖象.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.求函數(shù)$f(x)=6-12x+{x^3},x∈[-\frac{1}{3},1]$的最值以及對應(yīng)的x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.2-2的值為( 。
A.4B.2C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.若a<0<b,且$\frac{1}{a}>-\frac{1}$,則下列不等式:①|(zhì)b|>|a|;②a+b>0;③$\frac{a}+\frac{a}<-2$;④$a>2b-\frac{a^2}$中,正確的不等式有( 。
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.橢圓x2+8y2=1的短軸端點坐標是(  )
A.(-2$\sqrt{2}$,0),(2$\sqrt{2}$,0)B.(-1,0),(1,0)C.(0,-$\frac{\sqrt{2}}{4}$),(0,$\frac{\sqrt{2}}{4}$)D.$(0,-2\sqrt{2}),(0,2\sqrt{2})$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.某工廠的污水處理程序如下:原始污水必先經(jīng)過A系統(tǒng)處理,處理后的污水(A級水)達到環(huán)保標準(簡稱達標)的概率為p(0<p<1).經(jīng)化驗檢測,若確認達標便可直接排放;若不達標則必須進行B系統(tǒng)處理后直接排放.
某廠現(xiàn)有4個標準水量的A級水池,分別取樣、檢測.多個污水樣本檢測時,既可以逐個化驗,也可以將若干個樣本混合在一起化驗.混合樣本中只要有樣本不達標,則混合樣本的化驗結(jié)果必不達標.若混合樣本不達標,則該組中各個樣本必須再逐個化驗;若混合樣本達標,則原水池的污水直接排放.
現(xiàn)有以下四種方案,
方案一:逐個化驗;
方案二:平均分成兩組化驗;
方案三:三個樣本混在一起化驗,剩下的一個單獨化驗;
方案四:混在一起化驗.
化驗次數(shù)的期望值越小,則方案的越“優(yōu)”.
(Ⅰ) 若$p=\frac{2}{{\sqrt{5}}}$,求2個A級水樣本混合化驗結(jié)果不達標的概率;
(Ⅱ) 若$p=\frac{2}{{\sqrt{5}}}$,現(xiàn)有4個A級水樣本需要化驗,請問:方案一,二,四中哪個最“優(yōu)”?
(Ⅲ) 若“方案三”比“方案四”更“優(yōu)”,求p的取值范圍.

查看答案和解析>>

同步練習冊答案