長方體ABCD-A1B1C1D1中,∠DAD1=45°,∠CAC1=30°那么異面直線AD1與DC1所成角

A. B.2 C. D.

C

解析試題分析:在長方體中,由于∠DAD1=45°,∠CAC1=30°將AD1平移到BC1,然后將所求的角轉(zhuǎn)化為BC1與DC1所成角,那么只要確定了長方體的邊長即可得到結(jié)論,設(shè)底面的高為1,底面邊AD=1,AC1=2,AC=,那么BC1,AB=,結(jié)合三角形的余弦定理可知BC1與DC1所成角的正弦值為,那么可知該角為選項C.
考點:本試題考查了空間中異面直線所成的角的知識。
點評:解決該試題的關(guān)鍵是對于異面直線的角轉(zhuǎn)化為同一平面內(nèi)的角來求解處理,采用的方法是平移法,經(jīng)常用中位線平移,或者是平行四邊形的性質(zhì)來平移得到角的表示,進(jìn)而得到結(jié)論。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:單選題

從正方體的八個頂點中任取四個點連線,在能構(gòu)成的一對異面直線中,其所成的角的度數(shù)不可能是

A.30° B.45° C.60° D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

設(shè),是兩條不同的直線,是一個平面,則下列命題正確的是(  )

A.若,則B.若,則
C.若,,則D.若,,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

如圖所示,在正四棱錐S-ABCD中,的中點,P點在側(cè)面△SCD內(nèi)及其邊界上運動,并且總是保持.則動點的軌跡與△組成的相關(guān)圖形最有可有是圖中的(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

正四棱錐(底面為正方形,頂點在底面上的射影是底面的中心)的底面邊長為2,高為2,為邊的中點,動點在表面上運動,并且總保持,則動點的軌跡的周長為(   )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

設(shè)是兩條直線,是兩個不同平面,下列四個命題中,正確的命題是

A.若所成的角相等,則
B.若,,,則
C.若,,,則
D.若,,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

如圖,在中,,為△ABC所在平面外一點,PA⊥面ABC,則四面體P-ABC中共有直角三角形個數(shù)為

A.4B.3 C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

如果對于空間任意n(n≥2)條直線總存在一個平面α,使得這n條直線與平面α所成的角均相等,那么這樣的n(  )

A.最大值為3 B.最大值為4 C.最大值為5 D.不存在最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

二面角的平面角是銳角,點C且點C不在棱AB上,D是C在平面 上的射影,E是棱AB上滿足∠CEB為銳角的任意一點,則(   )

A.∠CEB>∠DEB B.∠CEB=∠DEB
C.∠CEB<∠DEB D.∠CEB與∠DEB的大小關(guān)系不能確定

查看答案和解析>>

同步練習(xí)冊答案