設(shè)集合A={y|y=lnx,x>1},集合B={x|y=
4-x2
},則A∩∁RB=( 。
A、∅
B、(0,2]
C、(2,+∞)
D、(-∞,-2)∪(2,+∞)
考點(diǎn):交、并、補(bǔ)集的混合運(yùn)算
專題:函數(shù)的性質(zhì)及應(yīng)用,集合
分析:先通過求函數(shù)的值域和定義域求出集合A,B,然后進(jìn)行補(bǔ)集、交集的運(yùn)算即可.
解答: 解:A={y|y>0},B={x|-2≤x≤2};
∴CRB={x|x<-2,或x>2};
∴A∩(CRB)=(2,+∞).
故選C.
點(diǎn)評:考查對數(shù)函數(shù)的單調(diào)性,函數(shù)值域、定義域的求法,描述法表示集合,以及補(bǔ)集、交集的定義與運(yùn)算.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

方程x2+
2
x-1=0的解可視為函數(shù)y=x+
2
的圖象與函數(shù)y=
1
x
的圖象交點(diǎn)的橫坐標(biāo),若x4+ax-4=0的各個實(shí)根x1,x2,…,xk(k≤4)所對應(yīng)的點(diǎn)(xi,
4
xi
)(i=1,2,…,k)均在直線y=x的同側(cè),則實(shí)數(shù)a的取值范圍是(  )
A、R
B、∅
C、(-6,6)
D、(-∞,-6)∪(6,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正四棱錐的頂點(diǎn)都在同一球面上,若該棱錐的體積為
16
3
,底面邊長為2,則該球的表面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2sin(x+
π
6
)cosx-
1
2

(Ⅰ)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)在△ABC中,若f(A)=
3
2
,∠B=
π
4
,AC=2,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}的公比為q,a1=
3
2
,其前n項(xiàng)和為Sn(n∈N*),且S2,S4,S3成等差數(shù)列.
(I)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=Sn-
1
Sn
(n∈N*),求bn的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求下列函數(shù)的周期
(1)y=-2cos(-
1
2
x-1);
(2)y=|sin2x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若復(fù)數(shù)z滿足iz=2+4i,i為虛數(shù)單位,則在復(fù)平面內(nèi)z對應(yīng)的點(diǎn)的坐標(biāo)是(  )
A、(4,2)
B、(4,-2)
C、(2,4)
D、(2,-4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,∠ABC=90°,以AB為直徑的圓O交AC于點(diǎn)E,點(diǎn)D是BC邊上的中點(diǎn),連接OD交圓O與點(diǎn)M.
(1)求證:DE是圓O的切線;
(2)求證:DE•BC=DM•AC+DM•AB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

任取實(shí)數(shù)a,b∈[-1,1],則a,b滿足|b|≥|
a
2
|的概率為
 

查看答案和解析>>

同步練習(xí)冊答案