某自來水廠的蓄水池存有400噸水,水廠每小時可向蓄水池中注水60噸,同時蓄水池又向居民小區(qū)不間斷供水,小時內(nèi)供水總量為噸(),從供水開始到第幾小時時,蓄水池中的存水量最少?最少水量是多少噸?

從供水開始到第6小時時,蓄水池水量最少,只有40噸

解析試題分析:蓄水池中的水量等于原有水量加上注水量再減去向小區(qū)的供水量,得到關(guān)于的一元二次方程,為計算方便可用換元法令,即將方程轉(zhuǎn)化為熟悉的關(guān)于x的一元二次方程,可利用配方法求值域。
試題解析:設(shè)小時后蓄水池中的水量為噸,

,即,且

∴當(dāng),即時,,
答:從供水開始到第6小時時,蓄水池水量最少,只有40噸
考點:實際應(yīng)用題,二次函數(shù)配方法求最值

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

某分公司經(jīng)銷某種品牌產(chǎn)品,每件產(chǎn)品的成本為3元,并且每件產(chǎn)品需向總公司交a元(3≤a≤5)的管理費,預(yù)計當(dāng)每件產(chǎn)品的售價為x元(9≤x≤11)時,一年的銷售量為(12-x)2萬件.
(1)求分公司一年的利潤L(萬元)與每件產(chǎn)品的售價x的函數(shù)關(guān)系式;
(2)當(dāng)每件產(chǎn)品的售價為多少元時,分公司一年的利潤L最大?并求出L的最大值Q(a).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)滿足,當(dāng);當(dāng).
(Ⅰ)求函數(shù)在(-1,1)上的單調(diào)區(qū)間;
(Ⅱ)若,求函數(shù)上的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)解不等式
(2)若.求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

“地溝油”嚴(yán)重危害了人民群眾的身體健康,某企業(yè)在政府部門的支持下,進行技術(shù)攻關(guān),新上了一種從“食品殘渣”中提煉出生物柴油的項目,經(jīng)測算,該項目月處理成本y(元)與月處理量x(噸)之間的函數(shù)關(guān)系可以近似的表示為:

且每處理一噸“食品殘渣”,可得到能利用的生物柴油價值為200元,若該項目不獲利,政府將補貼.
(1)當(dāng)x∈[200,300]時,判斷該項目能否獲利?如果獲利,求出最大利潤;如果不獲利,則政府每月至少需要補貼多少元才能使該項目不虧損;
(2)該項目每月處理量為多少噸時,才能使每噸的平均處理成本最低?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)).
(1)若的定義域和值域均是,求實數(shù)的值;
(2)若對任意的,,總有,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

對于函數(shù),若存在實數(shù)對(),使得等式對定義域中的每一個都成立,則稱函數(shù)是“()型函數(shù)”.
(1) 判斷函數(shù)是否為“()型函數(shù)”,并說明理由;
(2) 若函數(shù)是“()型函數(shù)”,求出滿足條件的一組實數(shù)對;
(3)已知函數(shù)是“()型函數(shù)”,對應(yīng)的實數(shù)對為(1,4).當(dāng) 時,,若當(dāng)時,都有,試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知二次函數(shù)的導(dǎo)函數(shù)的圖像與直線平行,且處取得極小值.設(shè).
(1)若曲線上的點到點的距離的最小值為,求的值;
(2)如何取值時,函數(shù)存在零點,并求出零點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

函數(shù)對任意a,b都有當(dāng)時,.
(1)求證:在R上是增函數(shù). (2)若,解不等式.

查看答案和解析>>

同步練習(xí)冊答案