【題目】已知A,B兩點(diǎn)都在以PC為直徑的球O的表面上,AB⊥BC,AB=2,BC=4,若球O的體積為,則三棱錐P-ABC表面積為___________

【答案】

【解析】

本道題結(jié)合直線(xiàn)與平面垂直的性質(zhì)和判定,得到該三棱錐四個(gè)面為直角三角形,計(jì)算面積,即可。

結(jié)合題意,繪制圖形,得到

結(jié)合P,C為球直徑上的兩點(diǎn),A在球面上,結(jié)合圓周角定理可知,A,P,C都在一個(gè)圓上,可得,,P,C,B也在球面上的同一個(gè)圓內(nèi),,所以平面BAP,得到,結(jié)合,所以PA平面ABC,故可知,三棱錐P-ABC四個(gè)面都是直角三角形,結(jié)合球O的體積為,建立等式得到,得到,結(jié)合AB=2,BC=4,結(jié)合勾股定理,可得,PC=2,結(jié)合勾股定理,可得,所以

,BC,AB,PA,AC,PB的長(zhǎng)度代入,得到

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果函數(shù)的導(dǎo)函數(shù)的圖象如圖所示,則以下關(guān)于函數(shù)的判斷:

①在區(qū)間內(nèi)單調(diào)遞增;

②在區(qū)間內(nèi)單調(diào)遞減;

③在區(qū)間內(nèi)單調(diào)遞增;

是極小值點(diǎn);

是極大值點(diǎn).

其中正確的是( )

A. ③⑤B. ②③C. ①④⑤D. ①②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知三棱柱,平面平面,,分別是的中點(diǎn).

(1)證明:;

(2)求直線(xiàn)與平面所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知fx)=3x22x,數(shù)列{an}的前n項(xiàng)和為Sn,點(diǎn)(n,Sn)(n∈N*)均在函數(shù)yfx)的圖象上.

1)求數(shù)列{an}的通項(xiàng)公式;

2)設(shè)bn,Tn是數(shù)列{bn}的前n項(xiàng)和,求使得Tn<對(duì)所有n∈N*都成立的最小正整數(shù)m

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知三棱錐的四個(gè)頂點(diǎn)在球的球面上,,是邊長(zhǎng)為正三角形,分別是的中點(diǎn),,則球的體積為_________________。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知A={x|x2≥9},B={x|﹣1<x≤7},C={x||x﹣2|<4}.

(1)求A∩B及A∪C;

(2)若U=R,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,直線(xiàn)的方程為,曲線(xiàn)為參數(shù),),在以原點(diǎn)為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,曲線(xiàn).

(1)求曲線(xiàn)的普通方程和曲線(xiàn)的直角坐標(biāo)方程;

(2)若直線(xiàn)與曲線(xiàn)有公共點(diǎn),且直線(xiàn)與曲線(xiàn)的交點(diǎn)恰好在曲線(xiàn)軸圍成的區(qū)域(不含邊界)內(nèi),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中為自然對(duì)數(shù)的底數(shù).

(Ⅰ)試判斷函數(shù)的單調(diào)性;

(Ⅱ)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知分別是雙曲線(xiàn)E 的左、右焦點(diǎn),P是雙曲線(xiàn)上一點(diǎn), 到左頂點(diǎn)的距離等于它到漸近線(xiàn)距離的2倍,(1)求雙曲線(xiàn)的漸近線(xiàn)方程;(2)當(dāng)時(shí), 的面積為,求此雙曲線(xiàn)的方程。

查看答案和解析>>

同步練習(xí)冊(cè)答案