9.函數(shù)$f(x)=\frac{2x-1}{e^x}$在x=1處的切線的斜率為$\frac{1}{e}$.

分析 對函數(shù)$f(x)=\frac{2x-1}{e^x}$求導(dǎo),當(dāng)x=1時,求出f'(1)即可.

解答 解:對函數(shù)$f(x)=\frac{2x-1}{e^x}$求導(dǎo):f'(x)=$\frac{3-2x}{{e}^{x}}$,
當(dāng)x=1時,f'(1)=$\frac{1}{e}$.
故答案為$\frac{1}{e}$.

點評 本題主要考查利用導(dǎo)數(shù)求曲線的斜率,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知i為虛數(shù)單位,復(fù)數(shù)z滿足z(1+i)=3-i,則z的實部為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)f(x)=|sinx|(x∈[-π,π]),g(x)為[-4,4]上的奇函數(shù),且$g(x)=\left\{{\begin{array}{l}{-2x(0<x≤2)}\\{4x-12(2<x≤4)}\end{array}}\right.$,設(shè)方程f(f(x))=0,f(g(x))=0,g(g(x))=0的實根的個數(shù)分別為m、n、t,則m+n+t=( 。
A.9B.13C.17D.21

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.某幾何體的三視圖如圖所示,則該幾何體的表面積為( 。
A.$\frac{7π}{3}$B.$8+\frac{π}{3}$C.$({4+\sqrt{2}})π$D.$({5+\sqrt{2}})π$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若從2個海濱城市和2個內(nèi)陸城市中隨機選2個去旅游,那么恰好選1個海濱城市的概率是(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知等比數(shù)列{an}的公比q>1,且a1+a3=20,a2=8.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)${b_n}=\frac{n}{a_n}$,Sn是數(shù)列{bn}的前n項和,不等式${S_n}+\frac{n}{{{2^{n+1}}}}>{(-1)^n}•a$對任意正整數(shù)n恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.將正整數(shù)排成一個三角形數(shù)陣:按照如圖排列的規(guī)律,則第20行從左到右的第4個數(shù)為194.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若等腰△ABC的周長為$4\sqrt{2}$,則△ABC腰AB上的中線CD的長的最小值是$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.一個幾何體,其三視圖如圖所示,則該幾何體的體積為$\frac{\sqrt{2}}{6}π$+$\frac{1}{3}$.

查看答案和解析>>

同步練習(xí)冊答案