已知曲線C上的動(dòng)點(diǎn)P(x,y)滿足到定點(diǎn)A(-1,0)的距離與到定點(diǎn)B(1,0)距離之比為
2

(1)求曲線C的方程.
(2)過(guò)點(diǎn)M(1,2)的直線l與曲線C交于兩點(diǎn)M、N,若|MN|=4,求直線l的方程.
分析:(1)根據(jù)動(dòng)點(diǎn)P(x,y)滿足到定點(diǎn)A(-1,0)的距離與到定點(diǎn)B(1,0)距離之比為
2
,建立方程,化簡(jiǎn)可得曲線C的方程.
(2)分類討論,設(shè)出直線方程,求出圓心到直線的距離,利用勾股定理,即可求得直線l的方程.
解答:解:(1)由題意得|PA|=
2
|PB|…(2分);
(x+1)2+y2
=
2
(x-1)2+y2
                    …(3分);
化簡(jiǎn)得:x2+y2-6x+1=0(或(x-3)2+y2=8)即為所求.  …(5分);
(2)當(dāng)直線l的斜率不存在時(shí),直線l的方程為x=1,
將x=1代入方程x2+y2-6x+1=0得y=±2,
所以|MN|=4,滿足題意.                                 …(8分);
當(dāng)直線l的斜率存在時(shí),設(shè)直線l的方程為y=kx-k+2
由圓心到直線的距離d=2=
|3k-k+2|
1+k2
                    …(10分);
解得k=0,此時(shí)直線l的方程為y=2.
綜上所述,滿足題意的直線l的方程為:x=1或y=2.      …(12分).
點(diǎn)評(píng):本題考查軌跡方程,考查直線與圓的位置關(guān)系,考查學(xué)生的計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知曲線C上的動(dòng)點(diǎn)P(x,y)滿足到點(diǎn)F(0,1)的距離比到直線l:y=-2的距離小1.
(Ⅰ)求曲線C的方程;
(Ⅱ)動(dòng)點(diǎn)E在直線l上,過(guò)點(diǎn)E分別作曲線C的切線EA,EB,切點(diǎn)為A、B.
(。┣笞C:直線AB恒過(guò)一定點(diǎn),并求出該定點(diǎn)的坐標(biāo);
(ⅱ)在直線l上是否存在一點(diǎn)E,使得△ABM為等邊三角形(M點(diǎn)也在直線l上)?若存在,求出點(diǎn)E坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知曲線C上的動(dòng)點(diǎn)P(x,y)滿足到點(diǎn)F(0,1)的距離比到直線y=-2的距離小1.
(1)求曲線C的方程;
(2)過(guò)點(diǎn)F作直線l與曲線C交于A、B兩點(diǎn).
(ⅰ)過(guò)A、B兩點(diǎn)分別作拋物線的切線,設(shè)其交點(diǎn)為M,證明:MA⊥MB;
(ⅱ)是否在y軸上存在定點(diǎn)Q,使得無(wú)論AB怎樣運(yùn)動(dòng),都有∠AQF=∠BQF?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知曲線C上的動(dòng)點(diǎn)P(x,y)滿足到點(diǎn)F(0,1)的距離比到直線l:y=-2的距離小1.
(Ⅰ)求曲線C的方程;
(Ⅱ)動(dòng)點(diǎn)E在直線l上,過(guò)點(diǎn)E分別作曲線C的切線EA、EB,切點(diǎn)為A、B.直線AB是否恒過(guò)定點(diǎn),若是,求出定點(diǎn)坐標(biāo),若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知曲線C上的動(dòng)點(diǎn)P到點(diǎn)F(2,0)的距離比它到直線x=-1的距離大1.
(I)求曲線C的方程;
(II)過(guò)點(diǎn)F(2,0)且傾斜角為α(0<α<
π2
)
的直線與曲線C交于A,B兩點(diǎn),線段AB的垂直平分線m交x軸于點(diǎn)P,證明:|FP|-|FP|•cos2α為定值,并求出此定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案