已知60a=5,則12
1
a-1
=
 
考點(diǎn):指數(shù)式與對(duì)數(shù)式的互化,函數(shù)的零點(diǎn)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用指數(shù)與對(duì)數(shù)式的互化求出a,代入所求表達(dá)式求解即可.
解答: 解:60a=5,a=log605,
12
1
a-1
=12
1
log605-1
=12
1
log60
5
60
=12log12
1
60
=
1
60

故答案為:
1
60
點(diǎn)評(píng):本題考查指數(shù)式與對(duì)數(shù)式的互化,基本知識(shí)的考查.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U=R,集合A={x|x-a+1≤0},集合B={x|x-a-2>0},集合C={x|x-
4
x
≥0},若∁U(A∪B)⊆C,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若集合A={x|x=6a+8b,a,b∈Z},集合B={x|x=2m,m∈Z},求證:集合A=B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某經(jīng)濟(jì)發(fā)達(dá)地區(qū)2013年底共有舊式各類消防車1萬輛,隨著建筑物的高度不斷增加,消防形勢(shì)嚴(yán)峻,消防部門計(jì)劃于2014年投入128輛射程更高、更遠(yuǎn)的進(jìn)口新型消防車,以后每年該款進(jìn)口新型消防車的投入量比上一年增加50%.
(1)預(yù)計(jì)在2020年應(yīng)該投入多少輛這種進(jìn)口新型消防車?
(2)假設(shè)消防車一直服役無耗損,到哪一年底,這種進(jìn)口新型消防車的數(shù)量開始不低于全部消防車總量的
1
3
?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={1,2,3,4,5,6},集合B={5,6,7},集合S⊆A,S∩B≠∅,這樣的集合S有
 
個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列等式中,不可能成立的是(  )
A、a m+3•a•a n-1=a m+n•a•a 2
B、( a•b ) m+3=a m+1•( a•b 2) 2•b m-1
C、〔( x-a ) 32〔( x+a ) 32=〔(a-x ) 2( x+a ) 23
D、〔( m-n ) 35=〔( n-m ) 25( n-m ) 5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是奇函數(shù),且x<0時(shí),f(x)=2ax+
1
x

(1)求x>0時(shí),f(x)的表達(dá)式;
(2)a為何值時(shí),f(x)在(1,+∞]上為增函數(shù);
(3)是否存在實(shí)數(shù)a,使f(x)在(-∞,0)上取得最大值為-9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列各組函數(shù)中,表示同一個(gè)函數(shù)的是(  )
A、y=x-1和y=
x2-1
x+1
B、y=x0和y=1
C、f(x)=x2和g(x)=(x+1)2
D、f ( x )=|x|;g ( x )=
x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=sin(2x+
π
4
).
(1)求f(
π
8
);
(2)若θ為銳角,且f(
θ
2
+
π
8
)的值為
3
5
,求cos(θ+
π
4
).

查看答案和解析>>

同步練習(xí)冊(cè)答案