20.若f(x)滿足關(guān)系式f(x)+2f($\frac{1}{x}$)=3x,則f(-2)的值為( 。
A.1B.-1C.-$\frac{3}{2}$D.$\frac{3}{2}$

分析 由已知得$\left\{\begin{array}{l}{f(x)+2f(\frac{1}{x})=3x}\\{f(\frac{1}{x})+2f(x)=\frac{3}{x}}\end{array}\right.$,從而求出$f(x)=\frac{2}{x}-x$,由此能求出f(-2)的值.

解答 解:∵f(x)滿足關(guān)系式f(x)+2f($\frac{1}{x}$)=3x,
∴$\left\{\begin{array}{l}{f(x)+2f(\frac{1}{x})=3x}\\{f(\frac{1}{x})+2f(x)=\frac{3}{x}}\end{array}\right.$,
解得$f(x)=\frac{2}{x}-x$,
∴f(-2)=$\frac{2}{-2}-(-2)$=1.
故選:A.

點(diǎn)評(píng) 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.關(guān)于x的方程(2017-x)(1999+x)=2016恰有兩個(gè)根為x1、x2,且x1、x2分別滿足3x1=a-3x1和log3(x2-1)3=a-3x2,則x1+x2+a=61.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知數(shù)列{an},{bn}滿足a1=1且an,an+1是函數(shù)f(x)=x2-bnx+2n的兩個(gè)零點(diǎn),則b9等于( 。
A.64B.48C.32D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.計(jì)算下列梯形的面積,上底為a,下底為b,高為h,請(qǐng)寫出該問題的算法.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知復(fù)數(shù)z滿足i•z=1+2i(其中i為虛數(shù)單位),則|z|=(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\sqrt{5}$D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)函數(shù)f(x)的定義域?yàn)镈,若存在閉區(qū)間[a,b]⊆D,使得函數(shù)f(x)滿足:
①f(x)在[a,b]上是單調(diào)函數(shù);
②f(x)在[a,b]上的值域是[2a,2b],則稱區(qū)間[a,b]是函數(shù)f(x)的“和諧區(qū)間”.
下列結(jié)論錯(cuò)誤的是( 。
A.函數(shù)f(x)=x2(x≥0)存在“和諧區(qū)間”B.函數(shù)f(x)=2x(x∈R)存在“和諧區(qū)間”
C.函數(shù)f(x)=$\frac{1}{{x}^{2}}$(x>0)不存在“和諧區(qū)間”D.函數(shù)f(x)=log2x(x>0)存在“和諧區(qū)間”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知集合M={1,2,3,4,5,6,7},命題p:?n∈M,n>1,則( 。
A.¬p:?n∈M,n≤1B.¬p:?n∈M,n>1C.¬p:?n∈M,n>1D.¬p:?n∈M,n≤1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.比較$\frac{{a}^{2}+^{2}}{2}$與($\frac{a+b}{2}$)2的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在平面直角坐標(biāo)系中,已知?jiǎng)狱c(diǎn)T到點(diǎn)A(-4,0),B(-1,0)的距離比為2.
(1)求動(dòng)點(diǎn)T的軌跡方程Γ;
(2)已知點(diǎn)P是直線l:y=x與曲線Γ在第一象限內(nèi)的交點(diǎn),過點(diǎn)P引兩條直線分別交曲線Γ于Q,R,且直線PQ,PR的傾斜角互補(bǔ),試判斷直線QR的斜率是否為定值,若是定值,請(qǐng)求出這個(gè)定值;若不是,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案