【題目】已知函數(shù),.

(1)當(dāng)時,求的單調(diào)區(qū)間;

(2)設(shè),若為函數(shù)的兩個不同極值點,證明:.

【答案】(1)見解析(2)見解析

【解析】

1)求出原函數(shù)的導(dǎo)函數(shù),可得時,若,單調(diào)遞增;若,求出導(dǎo)函數(shù)的零點,根據(jù)導(dǎo)函數(shù)與0的關(guān)系可得原函數(shù)的單調(diào)性;(2)根據(jù)導(dǎo)數(shù)先得R上單調(diào)遞增,原題轉(zhuǎn)化為證,根據(jù)進(jìn)一步轉(zhuǎn)化為證,再由,得到證明 ,設(shè),,化為證明,設(shè),利用導(dǎo)數(shù)證明即可.

解:(1),

,,單調(diào)遞增.

,由,解得,

,單調(diào)遞減,

,,單調(diào)遞增.

綜上,當(dāng)時,的單調(diào)遞增區(qū)間為

當(dāng)時,的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.

(2)

上單調(diào)遞增,即證:,

也即證:,

,

所以為方程的兩根,

即證,即,

而①-②得

即證:,

不妨設(shè),,

則證:變形得,

所以,

設(shè),

單調(diào)遞增,

,

即結(jié)論成立.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,已知以M為圓心的圓M: 及其上一點A2,4

1)設(shè)圓Nx軸相切,與圓M外切,且圓心N在直線x=6上,求圓N的標(biāo)準(zhǔn)方程;

2)設(shè)平行于OA的直線l與圓M相交于B、C兩點,且BC=OA,求直線l的方程;

3)設(shè)點Tt,o)滿足:存在圓M上的兩點PQ,使得,求實數(shù)t的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: 的右焦點為,離心率

(1)求橢圓C的標(biāo)準(zhǔn)方程;

(2)已知動直線l過點F,且與橢圓C交于A,B兩點,試問x軸上是否存在定點M ,使得恒成立?若存在,求出點M的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】的內(nèi)角、、的對邊分別為,,點的中點,已知,.

(1)求角的大小和的長;

(2)設(shè)的角平分線交,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知偶函數(shù),當(dāng)時,,若,為銳角三角形的兩個內(nèi)角,則( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)(注意:在試題卷上作答無效

如圖,四棱錐S-ABCD中,SD底面ABCD,AB//DC,ADDCAB=AD=1,DC=SD=2,E為棱SB上的一點,平面EDC平面SBC .

)證明:SE=2EB

求二面角A-DE-C的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如果從北大打車到北京車站去接人,聰明的專家一定會選擇走四環(huán)。雖然從城中間直穿過去看上去很誘人,但考慮到北京的道路幾乎總是正南正北的方向,事實上不會真有人認(rèn)為這樣走能抄近路。在城市中,專家估算兩點之間的距離時,不會直接去測量兩點之間的直線距離,而會去考慮它們相距多少個街區(qū)。在理想模型中,假設(shè)每條道路都是水平或者豎直的,那么只要你朝著目標(biāo)走(不故意繞遠(yuǎn)路),不管你這樣走,花費的路程都是一樣的。出租車幾何學(xué)(taxicab geometry),所謂的出租車幾何學(xué)是由十九世紀(jì)的另一位真專家赫爾曼-閔可夫斯基所創(chuàng)立的。在出租車幾何學(xué)中,點還是形如的有序?qū)崝?shù)對,直線還是滿足的所有組成的圖形,角度大小的定義也和原來一樣。只是直角坐標(biāo)系內(nèi)任意兩點定義它們之間的一種距離,請解決以下問題:

1)定義:是所有到定點距離為定值的點組成的圖形,求圓周上的所有點到點距離均為方程,并作出大致圖像;

2)在出租車幾何學(xué)中,到兩點、距離相等的點的軌跡稱為線段垂直平分線,已知點,;

①寫出在線段垂直平分線的軌跡方程,并寫出大致圖像;

②求證:三邊的垂直平分線交于一點(該點稱為外心),并求出外心”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國南宋數(shù)學(xué)家楊輝1261年所著的《詳解九章算法》一書里出現(xiàn)了如圖所示的表,即楊輝三角,這是數(shù)學(xué)史上的一個偉大成就.楊輝三角中,第行的所有數(shù)字之和為,若去除所有為1的項,依次構(gòu)成數(shù)列,則此數(shù)列的前55項和為( )

A. 4072B. 2026C. 4096D. 2048

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】求滿足下列條件的橢圓的標(biāo)準(zhǔn)方程:

(1)焦點在y軸上,焦距是4,且經(jīng)過點M(3,2);

(2)ca=5∶13,且橢圓上一點到兩焦點的距離的和為26.

查看答案和解析>>

同步練習(xí)冊答案