【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且b2+c2﹣a2=bc.
(1)求角A的大小;
(2)若a= ,且△ABC的面積為 ,求△ABC的周長(zhǎng).

【答案】
(1)解:∵b2+c2﹣a2=bc.

∴cosA= = ,

∵A∈(0,π),

∴A=


(2)解:∵a= ,A= ,由三角形面積公式可得: bcsin = ,解得bc=6,

∴由余弦定理可得:b2+c2﹣2bccos =7,即b2+c2﹣bc=(b+c)2﹣3bc=(b+c)2﹣18=7,

∴解得:b+c=5,

∴三角形的周長(zhǎng)為a+b+c=5+


【解析】(1)由已知利用余弦定理可求cosA= ,結(jié)合范圍A∈(0,π),即可得解A的值.(2)由已知利用三角形面積公式可得bc=6,由余弦定理可得b+c=5,即可得解三角形的周長(zhǎng).
【考點(diǎn)精析】關(guān)于本題考查的正弦定理的定義和余弦定理的定義,需要了解正弦定理:;余弦定理:;;才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=2sin(ωx+ )﹣1(ω>0)的圖象向右平移 個(gè)單位后與原圖象重合,則ω的最小值是(
A.6
B.3
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,GH是東西方向的公路北側(cè)的邊緣線(xiàn),某公司準(zhǔn)備在GH上的一點(diǎn)B的正北方向的A處建設(shè)一倉(cāng)庫(kù),設(shè)AB=ykm,并在公路北側(cè)建造邊長(zhǎng)為xkm的正方形無(wú)頂中轉(zhuǎn)站CDEF(其中EF在GH上),現(xiàn)從倉(cāng)庫(kù)A向GH和中轉(zhuǎn)站分別修兩條道路AB,AC,已知AB=AC+1,且∠ABC=60°。
(1)求y關(guān)于x的函數(shù)解析式,并求出定義域;
(2)如果中轉(zhuǎn)站四堵圍墻造價(jià)為10萬(wàn)元/km,兩條道路造價(jià)為30萬(wàn)元/km,問(wèn):x取何值時(shí),該公司建設(shè)中轉(zhuǎn)站圍墻和兩條道路總造價(jià)M最低.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=4cosxsin(x+ )+a的最大值為2.
(1)求a的值及f(x)的最小正周期;
(2)求f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= ,數(shù)列{an}的前n項(xiàng)和為Sn , 且an=f( ),則S2017=(
A.1008
B.1010
C.
D.2019

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)= (m∈R,x>m).
(1)若f(x)+m≥0恒成立,求m的取值范圍;
(2)若f(x)的最小值為6,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解學(xué)生身高情況,某校以 的比例對(duì)全校1000名學(xué)生按性別進(jìn)行分層抽樣調(diào)查,已知男女比例為 ,測(cè)得男生身高情況的頻率分布直方圖(如圖所示):

(1)計(jì)算所抽取的男生人數(shù),并估計(jì)男生身高的中位數(shù)(保留兩位小數(shù));
(2)從樣本中身高在 之間的男生中任選2人,求至少有1人身高在 之間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知 是定義在 上的偶函數(shù),對(duì)任意 ,都有 ,且當(dāng) 時(shí), .若 上有5個(gè)根 ,則 的值是( )
A.10
B.9
C.8
D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)=ax2﹣2(a+1)x+3(a∈R).
(1)若函數(shù)f(x)在 單調(diào)遞減,求實(shí)數(shù)a的取值范圍;
(2)令h(x)= ,若存在 ,使得|h(x1)﹣h(x2)|≥ 成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案