10.解不等式:
(1)|1-$\frac{2x-1}{3}$|≤2
(2)(2-x)(x+3)<2-x.

分析 (1)去掉絕對值,解不等式即可;
(2)把不等式化為(2-x)[(x+3)-1]<0,求出解集即可.

解答 解:(1)不等式|1-$\frac{2x-1}{3}$|≤2可化為
|$\frac{2x-4}{3}$|≤2,
即-2≤$\frac{2x-4}{3}$≤2,
∴-6≤2x-4≤6,
∴-2≤2x≤10,
解得-1≤x≤5,
∴原不等式的解集為{x|-1≤x≤5};
(2)不等式(2-x)(x+3)<2-x可化為
(2-x)[(x+3)-1]<0,
即(x-2)(x+2)>0,
解得x<-2或x>2,
∴原不等式的解集為{x|x>2或x<-2}.

點評 本題考查了含有絕對值的不等式和一元二次不等式的解法與應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.函數(shù)f(x)=$\left\{\begin{array}{l}{2^{-x}}-1,x≤0\\{x^{\frac{1}{2}}},x>0\end{array}$滿足f(x)=1的x值為( 。
A.1B.-1C.1或-2D.1或-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知點${F_1}(-\sqrt{2},0)、{F_2}(\sqrt{2},0)$,平面直角坐標系上的一個動點P(x,y)滿足$|\overrightarrow{P{F_1}}|+|\overrightarrow{P{F_2}}|=4$.設(shè)動點P的軌跡為曲線C.
(1)求曲線C的軌跡方程;
(2)已知點A、B是曲線C上的兩個動點,若$\overrightarrow{OA}⊥\overrightarrow{OB}$(O是坐標原點),試證明:原點O到直線AB的距離是定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.若向量$\overrightarrow a=(cos\frac{3}{2}x,sin\frac{3}{2}x)$,$\overrightarrow b=(cos\frac{x}{2},-sin\frac{x}{2})$,且$x∈[-\frac{π}{4},\frac{π}{4}]$.
(Ⅰ)求$|\overrightarrow a+\overrightarrow b|$;
(Ⅱ)若$f(x)=\overrightarrow a•\overrightarrow b$,求函數(shù)f(x)關(guān)于x的解析式和值域;
(Ⅲ)設(shè)t=2f(x)+a的值域為D,且函數(shù)$g(t)=\frac{1}{2}{t^2}+t-2$在D上的最小值為2,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,已知四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD為直角梯形,∠D=90°,且AB∥CD,AB=AD,∠BCD=45°.
(1)點F在線段PC上何位置時,BF∥平面PAD?并證明你的結(jié)論.
(2)當(dāng)直線PB與平面ABCD所成的角為45°時,求二面角B-PC-D的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=ax-lnx.
(1)當(dāng)a=1時,求曲線y=f(x)在(e,f(e))(e為自然對數(shù)的底)處的切線方程;
(2)當(dāng)x∈(0,e]時,是否存在實數(shù)a,使得f(x)的最小值是3?若存在,求出a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.如圖給出一個“三角形數(shù)陣”,已知每一列的數(shù)成等差數(shù)列,從第三行起,每一行的數(shù)成等比數(shù)列,每一行的公比都相等,記第i行第j列的數(shù)為${a_{ij}}(i≥j,i,j∈{N^*})$,則a63=( 。
A.$\frac{1}{8}$B.$\frac{1}{4}$C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)A、B為拋物線y2=2px(p>0)上相異兩點,則$|\overrightarrow{OA}+\overrightarrow{OB}{|^2}-|\overrightarrow{AB}{|^2}$的最小值為( 。
A.-4p2B.-3p2C.-2p2D.-p2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.將正偶數(shù)按下邊規(guī)律排列,第19行,從左到右,第6個數(shù)是(  )
2
4 6 8
10 12 14 16 18
20 22 24 26 28 30 32
A.654B.656C.658D.660

查看答案和解析>>

同步練習(xí)冊答案