【題目】我國(guó)古代數(shù)學(xué)名著《算法統(tǒng)宗》中有如下問(wèn)題:“遠(yuǎn)望巍巍塔七層,紅光點(diǎn)點(diǎn)倍加增,共燈三百八十一,請(qǐng)問(wèn)尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層共有燈( )
A.1盞
B.3盞
C.5盞
D.9盞

【答案】B
【解析】解:設(shè)這個(gè)塔頂層有a盞燈,
∵寶塔一共有七層,每層懸掛的紅燈數(shù)是上一層的2倍,
∴從塔頂層依次向下每層燈數(shù)是以2為公比、a為首項(xiàng)的等比數(shù)列,
又總共有燈381盞,
∴381= =127a,解得a=3,
則這個(gè)塔頂層有3盞燈,
故選B.
設(shè)這個(gè)塔頂層有a盞燈,由題意和等比數(shù)列的定義可得:從塔頂層依次向下每層燈數(shù)是等比數(shù)列,結(jié)合條件和等比數(shù)列的前n項(xiàng)公式列出方程,求出a的值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) (其中ω>0),若f(x)的一條對(duì)稱軸離最近的對(duì)稱中心的距離為
(1)求y=f(x)的單調(diào)遞增區(qū)間;
(2)在△ABC中角A、B、C的對(duì)邊分別是a,b,c滿足(2b﹣a)cosC=ccosA,則f(B)恰是f(x)的最大值,試判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(Ⅰ)當(dāng)時(shí),求曲線處的切線方程;

(Ⅱ)設(shè),證明:對(duì)任意,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線x2=y,點(diǎn)A(﹣ , ),B( ),拋物線上的點(diǎn)P(x,y)(﹣ <x< ),過(guò)點(diǎn)B作直線AP的垂線,垂足為Q.
(Ⅰ)求直線AP斜率的取值范圍;
(Ⅱ)求|PA||PQ|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司為確定下一年度投人某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)對(duì)年銷售額(單位:萬(wàn)元)的影響,對(duì)近6年的年宣傳費(fèi)和年銷售額數(shù)據(jù)進(jìn)行了研究,發(fā)現(xiàn)宣傳費(fèi)和年銷售額具有線性相關(guān)關(guān)系,并對(duì)數(shù)據(jù)作了初步處理,得到下面的一些統(tǒng)計(jì)量的值.

(I)根據(jù)表中數(shù)據(jù)建立關(guān)于的回歸方程;

(Ⅱ)利用(I)中的回歸方程預(yù)測(cè)該公司如果對(duì)該產(chǎn)品的宜傳費(fèi)支出為10萬(wàn)元時(shí)銷售額是萬(wàn)元,該公司計(jì)劃從10名中層管理人員中挑選3人擔(dān)任總裁助理,10名中層管理人員中有2名是技術(shù)部骨干,記所挑選3人中技術(shù)部骨干人數(shù)為且隨機(jī)變量,求的概率分布列與數(shù)學(xué)期望.

附:回歸直線的傾斜率截距的最小二乘估計(jì)公式分別為:

,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知{an}為等差數(shù)列,前n項(xiàng)和為Sn(n∈N+),{bn}是首項(xiàng)為2的等比數(shù)列,且公比大于0,b2+b3=12,b3=a4﹣2a1 , S11=11b4
(Ⅰ)求{an}和{bn}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{a2nb2n1}的前n項(xiàng)和(n∈N+).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】米勒問(wèn)題,是指德國(guó)數(shù)學(xué)家米勒1471年向諾德?tīng)柦淌谔岢龅挠腥?wèn)題:在地球表面的什么部位,一根垂直的懸桿呈現(xiàn)最長(zhǎng)(即可見(jiàn)角最大?)米勒問(wèn)題的數(shù)學(xué)模型如下:如圖,設(shè) 是銳角的一邊上的兩定點(diǎn),點(diǎn)是邊邊上的一動(dòng)點(diǎn),則當(dāng)且僅當(dāng)的外接圓與邊相切時(shí),最大.若,點(diǎn)軸上,則當(dāng)最大時(shí),點(diǎn)的坐標(biāo)為( )

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)利用五點(diǎn)法畫(huà)出函數(shù)在一個(gè)周期上的簡(jiǎn)圖;

(2)先把的圖象上所有點(diǎn)向左平移個(gè)單位長(zhǎng)度,得到的圖象;然后把的圖

象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2(縱坐標(biāo)不變),得到的圖象;再把的圖象

上所有點(diǎn)的縱坐標(biāo)縮短到原來(lái)的(橫坐標(biāo)不變),得到的圖象,求的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】盒中裝有個(gè)零件,其中個(gè)是使用過(guò)的,另外個(gè)未經(jīng)使用.

1)從盒中每次隨機(jī)抽取個(gè)零件,每次觀察后都將零件放回盒中,求次抽取中恰有次抽到使用過(guò)的零件的概率;

2)從盒中隨機(jī)抽取個(gè)零件,使用后放回盒中,記此時(shí)盒中使用過(guò)的零件個(gè)數(shù)為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案