已知c>0且c≠1,設(shè)p:指數(shù)函數(shù)y=(2c-1)x在R上為減函數(shù),q:不等式x+(x-2c)2>1的解集為R.若p∧q為假,p∨q為真,求c的取值范圍.
【答案】分析:分別求出當(dāng)p,q為真命題時(shí)的c的取值范圍,然后由題意可得p和q有且只有一個(gè)正確,然后分兩類由交集的運(yùn)算可得答案.
解答:解:當(dāng)p正確時(shí),
∵函數(shù)y=(2c-1)x在R上為減函數(shù),∴0<2c-1<1
∴當(dāng)p為正確時(shí),<1;
當(dāng)q正確時(shí),
∵不等式x+(x-2c)2>1的解集為R,
∴當(dāng)x∈R時(shí),x2-(4c-1)x+(4c2-1)>0恒成立.
∴△=(4c-1)2-4•(4c2-1)<0,∴-8c+5<0
∴當(dāng)q為正確時(shí),c>
由題設(shè),p和q有且只有一個(gè)正確,則
(1)p正確q不正確,∴
(2)q正確p不正確∴∴c>1
∴綜上所述,c的取值范圍是(]∪(1,+∞)
點(diǎn)評:本題為變量取值范圍的求解,涉及函數(shù)的單調(diào)性和一元二次不等式的解法,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知c>0且c≠1,設(shè)p:指數(shù)函數(shù)y=(2c-1)x在R上為減函數(shù),q:不等式x+(x-2c)2>1的解集為R.若p∧q為假,p∨q為真,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知c>0且c≠1,設(shè)p:指數(shù)函數(shù)y=(2c-1)x在R上為增函數(shù),q:不等式x+(x-2c)2>2的解集為R.若p∧q為假命題,p∨q為真命題,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知c>0且c≠1,設(shè)命題p:函數(shù)y=cx在R上單調(diào)遞減,命題q:不等式x2-
2
x+c>0
的解集為R,如果命題“p∨q”為真命題,“p∧q”為假命題,求實(shí)數(shù)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知c>0且c≠1,設(shè)p:指數(shù)函數(shù)y=(2c-1)x在R上為減函數(shù),q:不等式x2-(4c-1)+(4c2-1)>0的解集為R.若p和q有且僅有一個(gè)正確,求c的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案