【題目】已知,點在第一象限,以為直徑的圓與軸相切,動點的軌跡為曲線.

1)求曲線的方程;

2)若曲線在點處的切線的斜率為,直線的斜率為,求滿足的點的個數(shù).

【答案】1;(22

【解析】

1)設(shè),利用以為直徑的圓與軸相切列方程可得:,整理可得:,問題得解.

2)設(shè),利用導(dǎo)數(shù)求得:,結(jié)合可得:,構(gòu)造函數(shù):并利用導(dǎo)數(shù)知識可判斷內(nèi)有且只有兩個零點,問題得解.

1)設(shè),

,則中點坐標為,

因為以為直徑的圓與軸相切,

所以,即,

整理,得的方程為.

2)由,得,

設(shè)

,

,即,得*),

,

,得,或,

因為當(dāng)時,,當(dāng)時,

所以上遞減,在上遞增,

的圖象連續(xù)不斷

所以內(nèi)有且只有兩個零點,

所以方程(*)有且只有兩個不同的正根,

所以滿足的點的個數(shù)為2.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線x=﹣2上有一動點Q,過點Q作直線l,垂直于y軸,動點P在l1上,且滿足(O為坐標原點),記點P的軌跡為C.

(1)求曲線C的方程;

(2)已知定點M(,0),N(,0),點A為曲線C上一點,直線AM交曲線C于另一點B,且點A在線段MB上,直線AN交曲線C于另一點D,求△MBD的內(nèi)切圓半徑r的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】小明下班回家途經(jīng)3個有紅綠燈的路口,交通法規(guī)定:若在路口遇到紅燈,需停車等待;若在路口沒遇到紅燈,則直接通過.經(jīng)長期觀察發(fā)現(xiàn):他在第一個路口遇到紅燈的概率為,在第二、第三個道口遇到紅燈的概率依次減小,在三個道口都沒遇到紅燈的概率為,在三個道口都遇到紅燈的概率為,且他在各路口是否遇到紅燈相互獨立.

1)求小明下班回家途中至少有一個道口遇到紅燈的概率;

2)求小明下班回家途中在第三個道口首次遇到紅燈的概率;

3)記為小明下班回家途中遇到紅燈的路口個數(shù),求數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某投資公司在年年初準備將萬元投資到“低碳”項目上,現(xiàn)有兩個項目供選擇:

項目一:新能源汽車.據(jù)市場調(diào)研,投資到該項目上,到年底可能獲利,也可能虧損,且這兩種情況發(fā)生的概率分別為

項目二:通信設(shè)備.據(jù)市場調(diào)研,投資到該項目上,到年底可能獲利,可能損失,也可能不賠不賺,且這三種情況發(fā)生的概率分別為、.

針對以上兩個投資項目,請你為投資公司選擇一個合理的項目,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),曲線在點處的切線方程為

1)求的解析式;

2)求過曲線上任意一點的切線與直線和直線所圍成的三角形面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》中有如下問題:今有蒲生一日,長三尺,莞生一日,長1尺.蒲生日自半,莞生日自倍.問幾何日而長等?意思是:今有蒲第一天長高3尺,莞第一天長高1尺,以后蒲每天長高前一天的一半,莞每天長高前一天的2倍.若蒲、莞長度相等,則所需時間為()

(結(jié)果精確到0.1.參考數(shù)據(jù):lg20.3010,lg30.4771.)

A.2.6B.2.2C.2.4D.2.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列中,對任何正整數(shù)n都有:

1)若數(shù)列是首項和公差都是1的等差數(shù)列,求證:數(shù)列是等比數(shù)列;

2)若數(shù)列是首項為1的等比數(shù)列,數(shù)列是否是等差數(shù)列?若是請求出通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓的焦距是,長軸長是短軸長3倍,任作斜率為的直線與橢圓交于兩點(如圖所示),且點在直線的左上方.

1)求橢圓的方程;

2)若,求的面積;

3)證明:的內(nèi)切圓的圓心在一條定直線上。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了使房價回歸到收入可支撐的水平,讓全體人民住有所居,近年來全國各一、二線城市打擊投機購房,陸續(xù)出臺了住房限購令.某市一小區(qū)為了進一步了解已購房民眾對市政府岀臺樓市限購令的認同情況,隨機抽取了本小區(qū)50戶住戶進行調(diào)查,各戶人平均月收入(單位:千元)的戶數(shù)頻率分布直方圖如圖,其中贊成限購的戶數(shù)如下表:

人平均月收入

贊成戶數(shù)

4

9

12

6

3

1

1)若從人平均月收入在的住戶中再隨機抽取兩戶,求所抽取的兩戶至少有一戶贊成樓市限購令的概率;

2)若將小區(qū)人平均月收入不低于7千元的住戶稱為高收入戶,人平均月收入低于7千元的住戶稱為非高收入戶根據(jù)已知條件完成如圖所給的列聯(lián)表,并說明能否有的把握認為收入的高低贊成樓市限購令有關(guān).

非高收入戶

高收入戶

總計

贊成

不贊成

總計

附:臨界值表

0.1

0.05

0.010

0.001

2.706

3.841

6.63.5

10.828

參考公式:,.

查看答案和解析>>

同步練習(xí)冊答案