已知等差數(shù)列{an}的前n項(xiàng)和為Sn,n∈N*,且a2=3,點(diǎn)(10,S10)在直線y=10x上.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=2an+2n,求數(shù)列{bn}的前n項(xiàng)和Tn.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
在公差為d的等差數(shù)列{an}中,已知a1=10,且a1,2a2+2,5a3成等比數(shù)列.
(1)求d,an;
(2)若d<0,求|a1|+|a2|+|a3|+…+|an|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知無窮數(shù)列{an}的各項(xiàng)均為正整數(shù),Sn為數(shù)列{an}的前n項(xiàng)和.
(1)若數(shù)列{an}是等差數(shù)列,且對(duì)任意正整數(shù)n都有Sn3=(Sn)3成立,求數(shù)列{an}的通項(xiàng)公式;
(2)對(duì)任意正整數(shù)n,從集合{a1,a2,…,an}中不重復(fù)地任取若干個(gè)數(shù),這些數(shù)之間經(jīng)過加減運(yùn)算后所得數(shù)的絕對(duì)值為互不相同的正整數(shù),且這些正整數(shù)與a1,a2,…,an一起恰好是1至Sn全體正整數(shù)組成的集合.
(ⅰ)求a1,a2的值;
(ⅱ)求數(shù)列{an}的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列的前項(xiàng)和為,數(shù)列滿足:。
(1)求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的通項(xiàng)公式;(3)若,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列滿足,,.
(1)若成等比數(shù)列,求的值;
(2)是否存在,使數(shù)列為等差數(shù)列?若存在,求出所有這樣的;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等差數(shù)列滿足:.
(Ⅰ)求的通項(xiàng)公式及前項(xiàng)和;
(Ⅱ)若等比數(shù)列的前項(xiàng)和為,且,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知{an}是一個(gè)公差大于0的等差數(shù)列,且滿足a3a5=45,a2+a6=14.
(I)求{an}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{bn}滿足:…,求{bn}的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列滿足,,,是數(shù)列的前項(xiàng)和.
(1)若數(shù)列為等差數(shù)列.
(。┣髷(shù)列的通項(xiàng);
(ⅱ)若數(shù)列滿足,數(shù)列滿足,試比較數(shù)列 前項(xiàng)和與前項(xiàng)和的大。
(2)若對(duì)任意,恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知無窮數(shù)列的前項(xiàng)和為,且滿足,其中、、是常數(shù).
(1)若,,,求數(shù)列的通項(xiàng)公式;
(2)若,,,且,求數(shù)列的前項(xiàng)和;
(3)試探究、、滿足什么條件時(shí),數(shù)列是公比不為的等比數(shù)列.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com