橢圓
的焦點為
,過F
2垂直于x軸的直線交橢圓于一點P,那么|PF
1|的值是
.
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分14分)
如圖,橢圓
(
a>
b>0)的一個焦點為
F(1,0),且過點(2,0).
(Ⅰ)求橢圓
C的方程;
(Ⅱ)若
AB為垂直于
x軸的動弦,直線
l:
x=4與
x軸交于點
N,直線
AF與
BN交于點
M.
(ⅰ)求證:點
M恒在橢圓
C上;
(ⅱ)求
△AMN面積的最大值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分14分)如圖,拋物線
的焦點為F,橢圓
的離心率
,C
1與C
2在第一象限的交點為
(1)求拋物線C
1及橢圓C
2的方程;
(2)已知直線
與橢圓C
2交于不同兩點A、B,點M滿足
,直線FM的斜率為k
1,試證明
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分13分)
已知拋物線的焦點
在
軸上,拋物線上一點
到準線的距離是
,過點
的直線與拋物線交于
,
兩點,過
,
兩點分別作拋物線的切線,這兩條切線的交點為
.
(Ⅰ)求拋物線的標準方程;
(Ⅱ)求
的值;
(Ⅲ)求證:
是
和
的等比中項.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知直線
,則拋物線
上到直線距離最小的點的坐標為( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
橢圓
(
a >
b > 0) 且滿足
a≤
,若離心率為
e,則
e2 +
的最小值為
。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
過拋物線
的焦點作直線
交拋物線于A、B兩點,若線段AB中的橫坐標為3,則|AB|等于 ( )
A.2 B.4 C.8 D.16
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
我們可以運用下面的原理解決一些相關圖形的面積問題:如果與一固定直線平行的直線被甲、乙兩個封閉圖形所截得線段的比為定值
,那么甲的面積是乙的面積的
倍,你可以從給出的簡單圖形①(甲:大矩形
、乙:小矩形
)、②(甲
:大直角三角形
乙:小直角三角形
)中體會這個原理,現(xiàn)在圖③中的曲線分別是
與
,運用上面的原理,圖③中橢圓的面積為
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知直線
y=
x+1與橢圓
(
m>
n>0)相交于
A,
B兩點,若弦
AB的中點的橫坐標等于
,則雙曲線
的兩條漸近線的夾角的正切值等于_______.
查看答案和解析>>