【題目】已知橢圓的離心率為,它的一個(gè)頂點(diǎn)A與拋物線的焦點(diǎn)重合.

1求橢圓C的方程;

2是否存在直線l,使得直線l與橢圓C交于M,N兩點(diǎn),且橢圓C的右焦點(diǎn)F恰為的垂心三條高所在直線的交點(diǎn)?若存在,求出直線l的方程:若不存在,說明理由.

【答案】(1);(2)見解析

【解析】

1)因?yàn)闄E圓的一個(gè)頂點(diǎn)與拋物線的焦點(diǎn)重合,所以,又因?yàn)殡x心率為,可求出,的值,得到橢圓方程.

2)先假設(shè)存在直線與橢圓交于、兩點(diǎn),且橢圓的右焦點(diǎn)恰為的垂心.設(shè)出,坐標(biāo),由(1)中所求橢圓方程,可得點(diǎn)坐標(biāo),利用若的垂心,則,就可得到含,,的等式,再設(shè)方程為,代入橢圓方程,由已知條件能求出結(jié)果.

解:1橢圓的離心率為,它的一個(gè)頂點(diǎn)A與拋物線的焦點(diǎn)重合.

拋物線的焦點(diǎn)坐標(biāo)為

由已知得,再由,

解得

橢圓方程為

2設(shè),,,

,是垂心,

設(shè)MN的方程為,

代入橢圓方程后整理得:

,

代入橢圓方程后整理得:,

,是垂心,,

,,

整理得:,

,

存在直線l,其方程為使題設(shè)成立.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)試求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若不等式對任意的恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某次文藝匯演為,要將A,B,CD,EF這六個(gè)不同節(jié)目編排成節(jié)目單,如下表:

序號

1

2

3

4

5

6

節(jié)目

如果AB兩個(gè)節(jié)目要相鄰,且都不排在第3號位置,那么節(jié)目單上不同的排序方式有

A. 192種B. 144種C. 96種D. 72種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了調(diào)查某校高二學(xué)生的身高是否與性別有關(guān),隨機(jī)調(diào)查該校64名高二學(xué)生,得到2×2列聯(lián)表如表:

男生

女生

總計(jì)

身高低于170cm

8

24

32

身高不低于170cm

26

6

32

總計(jì)

34

30

64

附:K2

PK2k0

 0.050

 0.010

 0.001

 k0

3.841

6.635

 10.828

由此得出的正確結(jié)論是(

A.在犯錯誤的概率不超過0.01的前提下,認(rèn)為“身高與性別無關(guān)”

B.在犯錯誤的概率不超過0.01的前提下,認(rèn)為“身高與性別有關(guān)”

C.99.9%的把握認(rèn)為“身高與性別無關(guān)”

D.99.9%的把握認(rèn)為“身高與性別有關(guān)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

1)討論函數(shù)的單調(diào)性;

2)函數(shù)有兩個(gè)極值點(diǎn),且,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2017年3月智能共享單車項(xiàng)目正式登陸某市,兩種車型“小綠車”、“小黃車”采用分時(shí)段計(jì)費(fèi)的方式,“小綠車”每30分鐘收費(fèi)不足30分鐘的部分按30分鐘計(jì)算;“小黃車”每30分鐘收費(fèi)1元不足30分鐘的部分按30分鐘計(jì)算有甲、乙、丙三人相互獨(dú)立的到租車點(diǎn)租車騎行各租一車一次設(shè)甲、乙、丙不超過30分鐘還車的概率分別為,,三人租車時(shí)間都不會超過60分鐘甲、乙均租用“小綠車”,丙租用“小黃車”.

求甲、乙兩人所付的費(fèi)用之和等于丙所付的費(fèi)用的概率;

2設(shè)甲、乙、丙三人所付的費(fèi)用之和為隨機(jī)變量,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的長度單位,直線的參數(shù)方程為是參數(shù)),圓的極坐標(biāo)方程為.

(Ⅰ)求直線的普通方程與圓的直角坐標(biāo)方程;

(Ⅱ)設(shè)曲線與直線的交于,兩點(diǎn),若點(diǎn)的直角坐標(biāo)為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),函數(shù).

(1)若,求曲線在點(diǎn)處的切線方程;

(2)若函數(shù)有且只有一個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍;

(3)若函數(shù)恒成立,求實(shí)數(shù)的取值范圍.(是自然對數(shù)的底數(shù),)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)若,求曲線在點(diǎn)處的切線方程;

(Ⅱ)若,判斷函數(shù)的零點(diǎn)個(gè)數(shù),并說明理由.

查看答案和解析>>

同步練習(xí)冊答案