曲線與曲線的(   )

A.離心率相等       B.焦距相等          C.焦點(diǎn)相同         D.準(zhǔn)線相同

 

【答案】

B

【解析】

試題分析:因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013070611475758566643/SYS201307061148023480773299_DA.files/image001.png">,所以曲線表示焦點(diǎn)在x軸上的橢圓;其中;因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013070611475758566643/SYS201307061148023480773299_DA.files/image004.png">,所以曲線表示焦點(diǎn)在y軸上的雙曲線,且,所以兩個曲線有相同的焦距。

考點(diǎn):橢圓的標(biāo)準(zhǔn)方程;雙曲線的標(biāo)準(zhǔn)方程。

點(diǎn)評:熟練掌握判斷橢圓、雙曲線以及圓的方程的特點(diǎn)。方程,當(dāng)時表示橢圓;(當(dāng)時,表示焦點(diǎn)在x軸上的橢圓;當(dāng)時表示焦點(diǎn)在y軸上的橢圓。)當(dāng)時,表示雙曲線;當(dāng)時,表示圓。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

選修4-4:坐標(biāo)系與參數(shù)方程
已知圓錐曲線C:
x=2cosθ
y=
3
sinθ
(θ為參數(shù))和定點(diǎn)A(0,
3
)
,F(xiàn)1,F(xiàn)2是此圓錐曲線的左、右焦點(diǎn).
(1)以原點(diǎn)O為極點(diǎn),以x軸的正半軸為極軸建立極坐標(biāo)系,求直線AF2的極坐標(biāo)方程;
(2)經(jīng)過點(diǎn)F1,且與直線AF2垂直的直線l交此圓錐曲線于M、N兩點(diǎn),求||MF1|-|NF1||的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•浦東新區(qū)二模)(1)設(shè)橢圓C1
x2
a2
+
y2
b2
=1
與雙曲線C29x2-
9y2
8
=1
有相同的焦點(diǎn)F1、F2,M是橢圓C1與雙曲線C2的公共點(diǎn),且△MF1F2的周長為6,求橢圓C1的方程;
我們把具有公共焦點(diǎn)、公共對稱軸的兩段圓錐曲線弧合成的封閉曲線稱為“盾圓”.
(2)如圖,已知“盾圓D”的方程為y2=
4x            (0≤x≤3)
-12(x-4)  (3<x≤4)
.設(shè)“盾圓D”上的任意一點(diǎn)M到F(1,0)的距離為d1,M到直線l:x=3的距離為d2,求證:d1+d2為定值; 
(3)由拋物線弧E1:y2=4x(0≤x≤
2
3
)與第(1)小題橢圓弧E2
x2
a2
+
y2
b2
=1
2
3
≤x≤a
)所合成的封閉曲線為“盾圓E”.設(shè)過點(diǎn)F(1,0)的直線與“盾圓E”交于A、B兩點(diǎn),|FA|=r1,|FB|=r2且∠AFx=α(0≤α≤π),試用cosα表示r1;并求
r1
r2
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)M(0,-1),直線l:y=mx+1與曲線C:ax2+y2=2(m,a∈R)交于A、B兩點(diǎn).
(1)當(dāng)m=0時,有∠AOB=
π
3
,求曲線C的方程;
(2)當(dāng)實(shí)數(shù)a為何值時,對任意m∈R,都有
OA
OB
為定值T?指出T的值;
(3)設(shè)動點(diǎn)P滿足
MP
=
OA
+
OB
,當(dāng)a=-2,m變化時,求點(diǎn)P的軌跡方程;
(4)是否存在常數(shù)M,使得對于任意的a∈(0,1),m∈R,都有
OA
OB
<M
恒成立?如果存在,求出的M得最小值;如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:浙江省2009-2010學(xué)年第二學(xué)期高二3月月考數(shù)學(xué)試卷 題型:選擇題

曲線與曲線的                   (     )

A.長軸長相等    B.短軸長相等    C.焦距相等     D.離心率相等

 

查看答案和解析>>

同步練習(xí)冊答案