在直角△ABC中,∠B=
π
6
,c=
3
,則BC的長度為
 
考點(diǎn):三角形中的幾何計算
專題:計算題,解三角形
分析:分類討論,利用余弦函數(shù),即可得出結(jié)論.
解答: 解:在直角△ABC中,∠B=
π
6
,c=
3
,
①∠A=
π
2
,BC=
3
cos30°
=2;
②∠C=
π
2
,BC=
3
•cos30°
=
3
2
=
3
2
,
故答案為:
3
2
或2.
點(diǎn)評:本題考查解三角形,考查學(xué)生的計算能力,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知實(shí)數(shù)a,b,c滿足a+b+c=0,a2+b2+c2=3,則a的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=ax7-bx5+cx3+2,且f(-5)=m,則f(5)的值為( 。
A、mB、4C、m+2D、4-m

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(2x+
π
6
)+sin(2x-
π
6
)-cos2x+a(a∈R,a為常數(shù)).
(1)求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間;
(2)若x∈[0,
π
2
]時,求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a>1,函數(shù)f(x)=x+
a2
4x
,g(x)=x-lnx,若對任意的x1,x2∈[1,e],都有f(x1)≥g(x2)成立,則實(shí)數(shù)a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知y=f(x)是偶函數(shù),當(dāng)x>0時f(x)=(x-1)2,若當(dāng)x∈[-2,-
1
2
]時,n≤f(x)≤m恒成立,則m-n的最小值為( 。
A、
1
3
B、
1
2
C、
3
4
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(sinx,cosx),向量
b
=(cosx,cosx),函數(shù)f(x)=2
a
b

(1)求f(
4
)的值;
(2)求函數(shù)f(x)的最小正周期及單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,∠A,∠B∠C所對的邊為a,b,c,a=7,b=8,cosC=
13
14
,則邊c2是( 。
A、6B、7C、8D、9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知cos(
π
6
-α)=
1
3
,則cos(
5
6
π+α)=( 。
A、
1
3
B、-
1
3
C、
2
3
D、-
2
3

查看答案和解析>>

同步練習(xí)冊答案