【題目】已知圓C的圓心C在x軸上,且圓C與直線 相切于點(diǎn) .
(1)求n的值及圓C的方程;
(2)若圓M: 與圓C相切,求直線 截圓M所得的弦長.
【答案】
(1)解:∵由 ,∴n=﹣3,
過點(diǎn) 與直線 垂直的直線方程為 ,
當(dāng)y=o,x=1時(shí),得C(1,0),圓C半徑為 ,
∴圓C的方程為(x﹣1)2+y2=1
(2)解:∵ ,
∴當(dāng)兩圓外切時(shí),|CM|=4=1+r,∴r=3,當(dāng)兩圓內(nèi)切時(shí),|CM|=r﹣1,∴r=5.
∵M(jìn)到直線 的距離為 ,
∴當(dāng)r=3時(shí),弦長為 ,
當(dāng)r=5時(shí),弦長為 .
【解析】(1)利用點(diǎn)在直線上,求解n,求出垂線方程,求出圓心坐標(biāo),求出半徑,即可得到圓的方程.(2)利用兩個(gè)圓外切,求出半徑,利用半徑半弦長,圓心到直線的距離,滿足勾股定理求解即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=alnx﹣x2+1.
(Ⅰ)若曲線y=f(x)在x=1處的切線方程為4x﹣y+b=0,求實(shí)數(shù)a和b的值;
(Ⅱ)討論函數(shù)f(x)的單調(diào)性;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在( ﹣ )n的展開式中,第6項(xiàng)為常數(shù)項(xiàng).
(1)求n;
(2)求含x2項(xiàng)的系數(shù);
(3)求展開式中所有的有理項(xiàng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】袋中共有8個(gè)球,其中3個(gè)紅球、2個(gè)白球、3個(gè)黑球.若從袋中任取3個(gè)球,則所取3個(gè)球中至多有1個(gè)紅球的概率是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1)判斷函數(shù)f(x)的奇偶性;
(2)判斷f(x)在[2,+∞)上的單調(diào)性,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知p:|1﹣ |≤2,q:x2﹣2x+1﹣m2≤0(m>0).若“非p”是“非q”的必要而不充分條件,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列3個(gè)命題:
(1)函數(shù)f(x)在x>0時(shí)是增函數(shù),x<0也是增函數(shù),所以f(x)是增函數(shù);
(2)若函數(shù)f(x)=ax2+bx+2與x軸沒有交點(diǎn),則b2﹣8a<0且a>0;
(3)y=x2﹣2|x|﹣3的遞增區(qū)間為[1,+∞).
其中正確命題的個(gè)數(shù)是( )
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax2+2x+c(a、c∈N*)滿足:①f(1)=5;②6<f(2)<11.
(1)求a、c的值;
(2)若對(duì)任意的實(shí)數(shù)x∈[ , ],都有f(x)﹣2mx≤1成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)若函數(shù)在上為減函數(shù),求實(shí)數(shù)的最小值;
(2)若存在,使成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com