【題目】公差不為0的等差數(shù)列{an}的前n項和為Sn , 若a2 , a5 , a14成等比數(shù)列, ,則a10= .
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)數(shù)列{an}是各項均為正數(shù)的等比數(shù)列,其前n項和為Sn , 若a1a5=64,S5﹣S3=48.
(1)求數(shù)列{an}的通項公式;
(2)對于正整數(shù)k,m,l(k<m<l),求證:“m=k+1且l=k+3”是“5ak , am , al這三項經(jīng)適當排序后能構(gòu)成等差數(shù)列”成立的充要條件;
(3)設(shè)數(shù)列{bn}滿足:對任意的正整數(shù)n,都有a1bn+a2bn﹣1+a3bn﹣2+…+anb1=32n+1﹣4n﹣6,且集合 中有且僅有3個元素,試求λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知向量 , ,設(shè) .
(Ⅰ)若f(α)=2,求 的值;
(Ⅱ)在△ABC中,角A,B,C的對邊分別是a,b,c,且滿足(2a﹣b)cosC=ccosB,求f(A)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)樣本數(shù)據(jù)x1 , x2 , …,x10的均值和方差分別為1和4,若yi=xi+a(a為非零常數(shù),i=1,2,…,10),則y1 , y2 , …,y10的均值和方差分別為( 。
A.1+a,4
B.1+a,4+a
C.1,4
D.1,4+a
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校舉行“慶元旦”教工羽毛球單循環(huán)比賽(任意兩個參賽隊只比賽一場),共有高一、高二、高三三個隊參賽,高一勝高二的概率為 ,高一勝高三的概率為 ,高二勝高三的概率為P,每場勝負獨立,勝者記1分,負者記0分,規(guī)定:積分相同者高年級獲勝.
(Ⅰ)若高三獲得冠軍概率為 ,求P.
(Ⅱ)記高三的得分為X,求X的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=2lnx+x2﹣ax,a∈R.
(1)若函數(shù)y=f(x)在(0,+∞)上單調(diào)遞增,求實數(shù)a的取值范圍;
(2)若a=e,解不等式:f(x)<2;
(3)求證:當a>4時,函數(shù)y=f(x)只有一個零點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若Sn為等差數(shù)列{an}的前n項和,且a1=1,S10=55.記bn=[lnan],其中[x]表示不超過x的最大整數(shù),如[0.9]=0,[lg99]=1.則數(shù)列{bn}的前2017項和為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C: =1(a>b>0).
(1)若橢圓的離心率為 ,且點(1, )在橢圓上,
①求橢圓的方程;
②設(shè)P(﹣1,﹣ ),R、S分別為橢圓C的右頂點和上頂點,直線PR和PS與y軸和x軸相交于點M,N,求直線MN的方程.
(2)設(shè)D(b,0),過D點的直線l與橢圓C交于E、F兩點,且E、F均在y軸的右側(cè), =2 ,求橢圓離心率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xoy中,曲線C1是以C1(3,1)為圓心, 為半徑的圓.以坐標原點為極點,x軸正半軸為極軸建立極坐標系,直線C2:ρsinθ﹣ρcosθ=1.
(1)求曲線C1的參數(shù)方程與直線C2的直角坐標方程;
(2)直線C2與曲線C1相交于A,B兩點,求△ABC1的周長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com