【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線,直線l的參數(shù)方程為:(為參數(shù)),直線l與曲線C分別交于M,N兩點(diǎn).
(1)寫出曲線C的直角坐標(biāo)方程和直線l的普通方程;
(2)若點(diǎn),求的值.
【答案】(1);;(2).
【解析】
(1)將兩邊乘以,用代入,即可求出曲線直角坐標(biāo)方程;參數(shù)方程用代入法消去參數(shù),可求得直線的普通方程;
(2)直線化為過具有幾何意義的參數(shù)方程,代入曲線的方程,設(shè)兩點(diǎn)對應(yīng)的參數(shù)分別為,,根據(jù)韋達(dá)定理,得出,的關(guān)系式,結(jié)合參數(shù)幾何意義,將所求的量用,表示,即可求解.
解:⑴∵∴,則,
即為曲線C直角坐標(biāo)方程,
∵(為參數(shù))
∴為直線l的普通方程.
⑵注意到在直線l上,直線傾斜角為,
, ,
解得直線l的參數(shù)方程化為 (為參數(shù)),
代入得,, 恒成立,
設(shè)M,N對應(yīng)的參數(shù)分別為,,則, ,
不妨設(shè),,
∴.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線,橢圓分別為橢圓的左、右焦點(diǎn).
(1)當(dāng)直線過右焦點(diǎn)時,求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)直線與橢圓交于兩點(diǎn),為坐標(biāo)原點(diǎn),且,若點(diǎn)在以線段為直徑的圓內(nèi),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的幾何體中,底面為菱形, , , 與相交于點(diǎn),四邊形為直角梯形, , , ,平面底面.
(1)證明:平面平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線,過點(diǎn)的直線交C于A,B兩點(diǎn),拋物線C在點(diǎn)A處的切線與在點(diǎn)B處的切線交于點(diǎn)P.
(1)若直線的斜率為1,求;
(2)求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),.
(1)當(dāng)時,函數(shù)有兩個極值點(diǎn),求的取值范圍;
(2)若在點(diǎn)處的切線與軸平行,且函數(shù)在時,其圖象上每一點(diǎn)處切線的傾斜角均為銳角,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
1當(dāng)時,討論函數(shù)的單調(diào)性;
2當(dāng),時,對任意,,都有成立,求實(shí)數(shù)b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某生產(chǎn)基地有五臺機(jī)器,現(xiàn)有五項(xiàng)工作待完成,每臺機(jī)器完成每項(xiàng)工作后獲得的效益值如表所示.若每臺機(jī)器只完成一項(xiàng)工作,且完成五項(xiàng)工作后獲得的效益值總和最大,則下列敘述錯誤的的是_____________.
①甲只能承擔(dān)第四項(xiàng)工作
②乙不能承擔(dān)第二項(xiàng)工作
③丙可以不承擔(dān)第三項(xiàng)工作
④丁可以承擔(dān)第三項(xiàng)工作
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知、、為大于3的整數(shù),將的立方體分割為個單位正方體,從一角的單位正方體起第層、第行、第列的單位正方體記為.求所有有序六元數(shù)組的個數(shù),使得一只螞蟻從出發(fā),經(jīng)過每個小正方體恰一次到達(dá).(注)螞蟻可以從一個單位正方體爬到另一個與之有公共面的相鄰正方體.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=xlnx,g(x)=,
(1)求f(x)的最小值;
(2)對任意,都有恒成立,求實(shí)數(shù)a的取值范圍;
(3)證明:對一切,都有成立.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com