A. | .$\frac{1}{3}{t^2}$ | B. | $\frac{{\sqrt{3}}}{3}t$. | C. | .$\frac{{\sqrt{2}}}{3}t$. | D. | .$\frac{1}{2}t$ |
分析 設(shè)圓錐形漏斗的高為h,我們可以表示出底面半徑r,進(jìn)而得到圓錐體積的表達(dá)式,利用導(dǎo)數(shù)法,易得到體積取最大值時(shí),高h(yuǎn)與母線l之間的關(guān)系.
解答 解:設(shè)圓錐形漏斗的高為h,則圓錐的底面半徑為$\sqrt{{t}^{2}-{h}^{2}}$,(0<h<t)
則圓錐的體積V=$\frac{1}{3}$•π(t2-h2)•h=-$\frac{π}{3}$h3+$\frac{π{t}^{2}}{3}$h
則V′=-πh2+$\frac{π{t}^{2}}{3}$,
令V′=0
則h=±$\frac{\sqrt{3}}{3}$t
∵0<h<t
∴當(dāng)高h(yuǎn)=$\frac{\sqrt{3}}{3}$t時(shí),圓錐的體積取最大值,
故選:B.
點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是圓錐的體積,函數(shù)的最值,導(dǎo)數(shù)法在求函數(shù)最值中的應(yīng)用,其中設(shè)出漏斗的高為h,表示出底面半徑r,進(jìn)而得到圓錐體積的表達(dá)式,建立函數(shù)數(shù)學(xué)模型是解答本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {x|3<x<4} | B. | {x|-3<x<4} | C. | {x|2≤x<3} | D. | {x|2≤x≤3} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{16}$ | B. | $\frac{1}{8}$ | C. | 4 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 27 | B. | 36 | C. | 54 | D. | 179 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com